Difference between revisions of "Internet Scale Overlay Hosting"

From ARL Wiki
Jump to navigationJump to search
Line 18: Line 18:
  
 
== Scalable Overlay Hosting Platforms ==
 
== Scalable Overlay Hosting Platforms ==
 +
 +
general issues for scalable platforms
 +
 +
specifics for GENI and SPP
  
 
== Control of Overlay Hosting Services ==
 
== Control of Overlay Hosting Services ==
 +
 +
General control architecture, including design of a control overlay network.
  
 
== Internet Scale Overlay Applications ==
 
== Internet Scale Overlay Applications ==
  
 
Network games work.
 
Network games work.
 +
 +
Scalable audio.
  
 
== Mapping Overlays onto an OHS Infrastructure ==
 
== Mapping Overlays onto an OHS Infrastructure ==
 +
 +
Jing's work.
  
 
== Issues for Multi-domain Overlay Hosting ==
 
== Issues for Multi-domain Overlay Hosting ==
 +
 +
Control issues and multi-domain resource mapping.
  
 
== References ==
 
== References ==

Revision as of 17:01, 21 July 2008

[under construction]

Network overlays have become a popular tool for implementing Internet applications. While content-delivery networks provide the most prominent example of the commercial application of overlays, systems researchers have developed a variety of experimental overlay applications, demonstrating that the overlay approach can be an effective method for deploying a broad range of innovative systems. Rising traffic volumes in overlay networks make the performance of overlay platforms an issue of growing importance. Currently, overlay platforms are constructed using general purpose servers, often organized into a cluster with a load-balancing switch acting as a front end. This project explores more integrated and scalable architectures suitable for supporting large-scale applications with thousands to many millions of end users. In addition, we are studying various network level issues relating to the control and management of large-scale overlay hosting services.

Scalable Overlay Hosting Platforms

general issues for scalable platforms

specifics for GENI and SPP

Control of Overlay Hosting Services

General control architecture, including design of a control overlay network.

Internet Scale Overlay Applications

Network games work.

Scalable audio.

Mapping Overlays onto an OHS Infrastructure

Jing's work.

Issues for Multi-domain Overlay Hosting

Control issues and multi-domain resource mapping.

References

[BA06]
Bavier, A., N. Feamster, M. Huang, L. Peterson, J. Rexford. “In VINI Veritas: Realistic and Controlled Network Experimentation,” Proc. of ACM SIGCOMM, 2006.
[BH06]
Bharambe, A., J. Pang, S. Seshan. “Colyseus: A Distributed Archi-tecture for Online Multiplayer Games,” In Proc. Symposium on Networked Systems Design and Implementation (NSDI), 3/06.
[CH02]
Choi, S., J. Dehart, R. Keller, F. Kuhns, J. Lockwood, P. Pappu, J. Parwatikar, W. D. Richard, E. Spitznagel, D. Taylor, J. Turner and K. Wong. “Design of a High Performance Dynamically Extensible Router.” In Proceedings of the DARPA Active Networks Conference and Exposition, 5/02.
[CH03]
Chun, B., D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawr-zoniak, and M. Bowman. “PlanetLab: An Overlay Testbed for Broad-Coverage Services,” ACM Computer Communications Review, vol. 33, no. 3, 7/03.
[CI06]
Cisco Carrier Routing System. At www.cisco.com/en/ US/products/ps5763/, 2006
[DI02]
Dilley, J., B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl. “Globally Distributed Content Delivery,” IEEE Internet Computing, September/October 2002, pp. 50-58.
[FO07]
Force 10 Networks. “S2410 Data Center Switch,” http:// www.force10networks.com/products/s2410.asp, 2007.
[FR04]
Freedman, M., E. Freudenthal and D. Mazières. “Democratizing Content Publication with Coral,” In Proc. 1st USENIX/ACM Sym-posium on Networked Systems Design and Implementation, 3/04.
[GE06]
Global Environment for Network Innovations. http://www.geni.net/, 2006.
[HI98]
Mike Hicks_ Pankaj Kakkar_ Jonathan T_ Moore_ Carl A_ Gunter_ and Scott Nettles. “PLAN, A packet language for active networks,” In Proceedings of the Third ACM SIGPLAN International Conference on Functional Programming Languages, 1998.
[IXP]
Intel IXP 2xxx Product Line of Network Processors. http://www .intel.com/design/network/products/npfamily/ixp2xxx.htm.
[KA02]
Karlin, Scott and Larry Peterson. “VERA: An Extensible Router Architecture,” In Computer Networks, 2002.
[KO00]
Kohler, Eddie, Robert Morris, Benjie Chen, John Jannotti and M. Frans Kaashoek. “The Click modular router,” ACM Transactions on Computer Systems, 8/2000.
[KO04]
Kontothanassis, L. R. Sitaraman, J. Wein, D. Hong, R. Kleinberg, B. Mancuso, D. Shaw and D. Stodolsky. “A Transport Layer for Live Streaming in a Content Delivery Network,” Proc. of the IEEE, Special Issue on Evolution of Internet Technologies, 9/04.
[PA03]
Pappu, P., J. Parwatikar, J. Turner and K. Wong. “Distributed Queueing in Scalable High Performance Routers.” Proceeding of IEEE Infocom, 4/03.
[PE02]
Peterson, L., T. Anderson, D. Culler and T. Roscoe. “A Blueprint for Introducing Disruptive Technology into the Internet,” Proceed-ings of ACM HotNets-I Workshop, 10/02.
[RA05]
Radisys Corporation. “Promentum™ ATCA-7010 Data Sheet,” product brief, available at http://www. radisys.com/files/ATCA-7010_07-1283-01_0505_datasheet.pdf.
[RH05]
Rhea, S., B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica and H. Yu. “OpenDHT: A Public DHT Service and Its Uses,” Proceedings of ACM SIGCOMM, 9/2005.
[SP01]
Spalink, T., S. Karlin, L. Peterson and Y. Gottlieb. “Building a Robust Software-Based Router Using Network Processors,” In ACM Symposium on Operating System Principles (SOSP), 2001.
[ST01]
Stoica, I., R. Morris, D. Karger, F. Kaashoek and H. Balakrishnan. “Chord: A scalable peer-to-peer lookup service for internet applica-tions.” In Proceedings of ACM SIGCOMM, 2001.
[ST02]
Stoica, I., D. Adkins, S. Zhuang, S. Shenker, S. Surana, “Internet Indirection Infrastructure,” Proc. of ACM SIGCOMM, 8/02.
[TU06]
Turner, J. “A Proposed Architecture for the GENI Backbone Plat-form,” In Proceedings of ACM- IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), 12/2006.
[VS06]
Linux vServer. http://linux-vserver.org