
WASHINGTON UNIVERSITY

Sever Institute
School of Engineering and Applied Science

Department of Computer Science and Engineering

Dissertation Examination Committee:
Ron K. Cytron, Chair

Young H. Cho, Co-Chair
John W. Lockwood, Co-Chair

Jeremy D. Buhler
Roger D. Chamberlain

Ronald P. Loui
Robert E. Morley

TECHNIQUES FOR HARDWARE-ACCELERATED PARSING

FOR NETWORK AND BIOINFORMATIC APPLICATIONS

by

James M. Moscola

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

May 2008

Saint Louis, Missouri

copyright by

James M. Moscola

2008

Acknowledgments

I would first like to thank those professors who have advised me throughout my graduate

studies. First, I would like to thank my initial research advisor, Dr. John Lockwood, for

his guidance over the years and for giving me the opportunity to work on a number of

interesting, real-world problems. I would also like to extend a special thanks to Dr. Young

Cho for taking on the role of a secondary advisor in Dr. Lockwood’s absence. During his

brief period as a visiting assistant professor at Washington University, Dr. Cho took the

time to share a great deal of his knowledge and experiences with me. He also played a key

role in formulating the direction of this work. Additionally, I would like to give a special

thanks to Dr. Ron Cytron for advising me upon the departure of Dr. Lockwood. Dr.

Cytron played an integral part in inspiring the direction of the bioinformatics portion of

this dissertation. I am also grateful for all of the time that he dedicated to meeting with

me and for the insightful discussions that he provided during that time. In the short period

that we worked together, Dr. Cytron has made a strong impact on the way I think about

and approach problems.

Next, I would like to thank the members of my dissertation committee, Dr. Jeremy Buhler,

Dr. Roger Chamberlain, Dr. Young Cho, Dr. Ron Cytron, Dr. John Lockwood, and Dr.

Robert Morley, for providing support and feedback throughout this research.

I would also like to thank Dr. John Lockwood for providing me funding support throughout

most of my graduate studies. Without this support I would not have been able to pursue

this research. For additional funding support, I would like to thank Dr. Jon Turner and

Dr. Jerome Cox. Their support through the last year of my graduate studies allowed me

ii

to not only finish this dissertation, but also to explore new and interesting research topics.

Additional thanks go out to all members, past and present, of the FPX Group (a.k.a. the

Reconfigurable Network Group), and to the many other friends and colleagues in the CSE

department at Washington University. I would especially like to thank my office mate,

Phillip Jones, for many years of valuable feedback and discussion related to this research.

For their support and for always reminding me that I was still in graduate school, I would

like to thank my family. Finally, I would like to express the highest level of gratitude

to my wife Stephanie for her patience and sacrifice throughout this journey. Her support

and encouragement helped to keep me focused on finishing my education. Her smile and

laughter helped to remind me that there was life outside of my education.

James M. Moscola

Washington University in Saint Louis

May 2008

iii

Contents

Acknowledgments . ii

List of Tables . viii

List of Figures . x

Abstract . xv

1 Introduction . 1

1.1 Parsing in Network Applications . 1

1.2 Parsing in Bioinformatic Applications . 2

1.3 Reconfigurable Hardware . 3

1.4 Contributions . 4

1.5 Overview of Dissertation . 5

I Hardware Architectures for Pattern Matching and

Parsing in Network Applications 7

2 Hardware-Accelerated Pattern Matching 8

2.1 Related Work . 9

2.2 Pre-Decoded Character Bits . 9

2.3 Pipelined Regular Expression Chain . 10

2.4 Pipelined Character Grid . 11

iv

2.4.1 Regular Expression Extensions to the Pipelined Character Grid . . . 13

2.5 Timed Segment Matching . 14

2.5.1 Regular Expression Pattern Detection 17

2.5.2 Scalable Architecture . 19

2.5.3 Implementation . 21

2.6 Chapter Summary . 26

3 Hardware-Accelerated Regular Language Parsing 28

3.1 Related Work . 29

3.2 Architecture for High-Speed Regular Language Parsing 29

3.3 Chapter Summary . 34

4 Applications of Regular Language Parser 35

4.1 Background . 35

4.1.1 Field-Programmable Port Extender 35

4.1.2 Layered Protocol Wrappers . 36

4.1.3 TCP Protocol Processor . 37

4.2 Content-Based Router . 37

4.2.1 Pattern Matcher . 39

4.2.2 Parsing Structure . 41

4.2.3 Routing Module . 43

4.2.4 Implementation and Experimental Setup 45

4.2.5 Area and Performance . 47

4.3 Semantic Network-Content Filter . 47

4.3.1 Background . 48

4.3.2 Application Level Processing System 51

4.3.3 Implementation of Email Parser . 52

4.3.4 Data Sets and Results . 56

4.4 Chapter Summary . 59

v

II Hardware Architectures for Accelerating RNA

Secondary Structure Alignment 60

5 RNA Secondary Structure Alignment . 61

5.1 Introduction . 61

5.2 Related Work . 63

5.3 Background . 64

5.3.1 Covariance Models . 64

5.3.2 Rfam Database . 66

5.3.3 Database Search Algorithm . 67

5.4 Expressing Covariance Models as Task Graphs 69

5.4.1 Bifurcation States . 69

5.5 Covariance Model Numeric Representation in Hardware 71

5.6 Chapter Summary . 75

6 The Baseline Architecture . 76

6.1 Overview . 76

6.2 Processing Elements . 77

6.3 Pipeline . 80

6.4 Implementation Results . 81

6.5 Expected Speedup for Larger CMs . 84

6.6 Chapter Summary . 85

7 The Processor Array Architecture . 86

7.1 Overview . 87

7.2 Processing Modules . 88

7.2.1 Instruction Format . 90

7.2.2 Executing Instructions . 91

7.3 Shared Memory Structure . 91

7.3.1 Writing Results to the Shared Memory Structure 92

vi

7.3.2 Reading Data from the Shared Memory Structure 93

7.4 Reporting Module . 95

7.5 Scheduling Computations . 96

7.5.1 Optimal Scheduling of Directed Task Graphs 97

7.5.2 Scheduling Task Graphs on Finite Resources with Computational La-

tency . 98

7.6 Architecture Analysis . 104

7.6.1 Running Time . 105

7.6.2 Scheduling Efficiency . 106

7.6.3 Memory Requirements . 107

7.6.4 Scalability of Architecture . 111

7.6.5 Comparison to Software . 117

7.7 Chapter Summary . 120

8 Summary and Future Work . 121

8.1 Dissertation Summary . 121

8.2 Future Work . 121

Appendix A Email Grammar in Lex/Yacc Style Format 124

Appendix B Covariance Model Data . 129

Appendix C Additional Results for the Baseline Architecture 131

Appendix D Additional Results for the Processor Array Architecture . . 134

Appendix E Additional Results for the Speedup of the Processors Array

Architecture Over Infernal . 145

References . 156

Vita . 162

vii

List of Tables

2.1 Device utilization for pipelined regular expression chain and pipelined char-

acter grid architectures . 23

2.2 Device utilization for the architectures . 23

2.3 Device utilization when scanning for regular expressions 26

3.1 FIRST and FOLLOW sets for symbols in the grammar 31

4.1 FOLLOW sets for example grammar . 42

4.2 Language identification results for the 300-byte data set 56

4.3 Percentage of correctly classified documents for HAIL alone and ALPS+HAIL 57

4.4 Increase in accuracy when using ALPS+HAIL as opposed to HAIL alone . 58

5.1 Each of the nine different state types and their corresponding SCFG produc-

tion rules . 65

6.1 Performance comparison between Infernal and the baseline architecture . 82

6.2 Estimated speedup for baseline architecture running at 100 MHz 84

7.1 Configuration and resource requirements for different sized processor arrays. 113

7.2 The instruction sizes and bandwidth required for streaming instructions to

the processor array architecture. 116

7.3 Estimated runtime and speedup of processor array architecture over Infer-

nal software package. Estimate is based on a processor array running at 250

MHz. Additional results are in Appendix E. 118

viii

B.1 Covariance Model Data . 130

C.1 Estimated speedup for baseline architecture running at 100 MHz compared

to Infernal . 133

D.1 Results for processor array architecture using 1 processor 136

D.2 Results for processor array architecture using 2 processors 137

D.3 Results for processor array architecture using 4 processors 138

D.4 Results for processor array architecture using 8 processors 139

D.5 Results for processor array architecture using 16 processors 140

D.6 Results for processor array architecture using 32 processors 141

D.7 Results for processor array architecture using 64 processors 142

D.8 Results for processor array architecture using 128 processors 143

D.9 Results for processor array architecture using 256 processors 144

E.1 Processor array architecture with 1 processor compared to Infernal 147

E.2 Processor array architecture with 2 processors compared to Infernal . . . 148

E.3 Processor array architecture with 4 processors compared to Infernal . . . 149

E.4 Processor array architecture with 8 processors compared to Infernal . . . 150

E.5 Processor array architecture with 16 processors compared to Infernal . . 151

E.6 Processor array architecture with 32 processors compared to Infernal . . 152

E.7 Processor array architecture with 64 processors compared to Infernal . . 153

E.8 Processor array architecture with 128 processors compared to Infernal . . 154

E.9 Processor array architecture with 256 processors compared to Infernal . . 155

ix

List of Figures

2.1 Decoder for 8-bit ASCII character “A” (0x41) 10

2.2 Constructing regular expressions . 10

2.3 Simple example of pattern matcher using the pipelined character method . 12

2.4 Scaled pipelined character grid . 13

2.5 Patterns with wild card characters . 14

2.6 Fast FPGA pattern matchers for “aaaabbbccc” using a pipelined character

grid; (a) ZAND uses AND gate matching and (b) ZTS uses TSM. 16

2.7 Pseudocode to generate a string comparator for the TSM architecture . . . 17

2.8 Regular expression operations in the timed segment matching architecture . 18

2.9 TSM example for “aaaa(abc|ba)*ccc” . 19

2.10 Wide pipeline grid for 4× scaled architecture 19

2.11 Examples of the zero-or-more regular expression operation in the scaled TSM

architecture . 21

2.12 TSM architecture for ...“(abbacddc)*”... 22

2.13 LUTs vs. Number of Pattern Bytes . 24

2.14 LUTs/Byte vs. Number of Pattern Bytes 25

2.15 DFFs vs. Number of Pattern Bytes . 25

3.1 Algorithm for finding FIRST () and FOLLOW () sets from a production list [6] 30

3.2 Sample grammar for a regular language . 30

3.3 NFA for grammar in Figure 3.2 . 31

3.4 Hardware parser for grammar shown in Figure 3.2 31

x

3.5 Sample grammar for a regular language . 32

3.6 Hardware parser for grammar in Figure 3.5 33

3.7 Simplified parsing structure for grammar in Figure 3.5 33

4.1 Router in protocol wrappers . 36

4.2 Document Type Definition (DTD) for content-based router implementation 38

4.3 Lex/Yacc style grammar . 38

4.4 Content-based router architecture . 39

4.5 Diagram of pattern matcher pipeline . 40

4.6 Diagram of a string detector . 41

4.7 Diagram of parsing structure . 43

4.8 Diagram of routing module . 44

4.9 FPX and GVS-1000 chassis . 45

4.10 Test application interface . 46

4.11 XML packet contents . 46

4.12 Flow of documents through the document classification system 49

4.13 Sample email message . 52

4.14 ABNF for date portion of email grammar 53

4.15 BNF for date portion of email grammar . 53

4.16 ALPS email parser architecture . 54

4.17 Pattern matcher for lexical analysis . 55

4.18 Percentage of documents correctly classified by HAIL for each data set . . . 58

4.19 Increase in accuracy when using ALPS+HAIL 59

5.1 A reproduction of an example CM from [23, 53] 65

5.2 The number of covariance models in the Rfam database has continued to

increase since its initial release in July of 2002. 66

5.3 An alignment window scans across the genome database. Each window is

aligned to the CM via the DP parsing algorithm. 67

xi

5.4 The initialization and recursion equations for the dynamic programming al-

gorithm . 68

5.5 Distribution of maximum scores of all CMs in the Rfam 8.0 database 73

5.6 Graph depicting the linear relationship between the number of states in a

CM and the maximum score computable for that CM 74

6.1 A small CM, consisting of four nodes and thirteen states, represents a con-

sensus secondary structure of only three residues 78

6.2 A high-level view of a pipeline for the baseline architecture 78

6.3 Each CM state is represented as a two-dimensional matrix, and each matrix

cell is represented as a processing element containing adders and comparators. 79

6.4 18 of the 130 PEs required to implement the CM shown in Figure 6.1 using

the baseline architecture. The full pipeline structure can be automatically

generated directly from a CM. 81

6.5 Percentage of CMs that will fit onto hardware in a given year 83

7.1 A high-level block diagram of processor array architecture with two process-

ing modules. The number of processing modules can be scaled as shown with

dashed lines. 87

7.2 Block diagram of a single PM. Dashed lines represent components that are

only needed on the first PM. 88

7.3 Write interface configuration for a single PM with six individual memories . 93

7.4 Switched read interface for two PMs, each with six individual memories . . 94

7.5 Flow Diagram of Hu’s scheduling algorithm 97

7.6 (a) An example task graph with distance labels; (b) schedule for task graph

in (a) using unlimited processors; (c) schedule for task graph in (a) using two

processors . 98

7.7 Flow Diagram of Modified Hu’s scheduling algorithm 100

xii

7.8 (a) An example task graph with distance labels; (b) schedule for task graph

in (a) using unlimited processors and accounting for a 10 time unit compu-

tational latency; (c) schedule for task graph in (a) using two processors and

accounting for a 10 time unit computational latency 101

7.9 (a) An example task graph with distance labels; (b) schedule for task graph as

shown in Figure 7.8, but with a memory conflict at time t = 10; (c) schedule

for task graph with memory conflict resolved. Note that N1 was moved to

t = 11 and its dependent N0 was moved to tN0 = tN1 + l = 21. 104

7.10 The length of the scheduled computation decreases as the number of proces-

sors available for the computation increases (shown on a log-log scale). . . . 105

7.11 The speedup shows the diminishing returns as more processors are added to

the processors array. The efficiency decreases as more processors are added

to the processors array, indicating that more idle time is inserted into the

schedule as the number of processors increases. 107

7.12 The maximum amount of live memory remains fairly consistent regardless of

the number of processors. 108

7.13 As the number of processors in the processor array architecture increases,

the average memory required per processor decreases. 109

7.14 Memory trace for CM RF00016 . 110

7.15 Memory trace for CM RF00034 . 111

7.16 Resource requirements for the processing elements and Banyan switches in

different sized processor arrays. 114

7.17 Resource requirements for different sized processor arrays. Note that the

Batcher switches account for the majority of the resources. 114

7.18 The estimated time to align a 1 million residue database to four different

CMs using varying numbers of processors. The shortest bar represents the

time to compute the results using 256 processors. The longest bar represents

the time to compute the results using a single processor. 119

xiii

7.19 A comparison of the estimated time to align a 1 million residue database using

the processor array architecture versus the time required for Infernal. The

shorter bar in the Infernal categories represents the time when using the

QDB heuristic. The longer bar represents the time without QDB. 119

xiv

ABSTRACT OF THE DISSERTATION

Techniques for Hardware-Accelerated Parsing

for Network and Bioinformatic Applications

by

James M. Moscola

Doctor of Philosophy in Computer Engineering

Washington University in St. Louis, 2008

Ron K. Cytron, Chairperson,

Young H. Cho, Co-Chair, John W. Lockwood, Co-Chair

Since the development of the first parsers, parsing has generally been considered a

software problem. Software parsers have been developed for many different uses including

compiling software, rendering web pages, and even translating languages. However, as new

technologies and discoveries emerge, traditional software techniques for parsing data are

either not fast enough to keep up with data rates, or simply take too long to produce results

in a reasonable period of time. This dissertation discusses techniques and architectures for

accelerating parsing in two different domains. One requires parsing of high-speed streaming

data. The other requires parsing of very large data sets with a computationally complex

parsing algorithm.

The first part of this dissertation focuses on architectures for accelerated parsing of

network data. As network rates continue to increase and the volume of data transferred

across networks escalates, it will become progressively more difficult for software packet

examination techniques to maintain the required throughput. Couple this with the develop-

ment of new networking technologies, such as content-based routing and publish/subscribe

networks, and it is clear that high-speed architectures for parsing packet payloads are

required. New architectures for both pattern-matching and parsing are presented and

compared to existing architectures. Additionally, two example applications are presented.

The first is a simple content-based router. The second is an email parser capable of

delineating and extracting user-specified portions of email messages.

xv

The second part of this dissertation examines another parsing problem where high

throughput is desired, but for which many parses are possible for each input, and all such

parses must be considered. The difficulty of the problem is amplified by the large volumes

of data that must be parsed. More specifically, this work investigates techniques and archi-

tectures suitable for accelerating the complex parsing algorithm used for discovering new

RNA molecules in genome databases. Two different hardware architectures are presented

and evaluated against a well-known software suite.

xvi

Chapter 1

Introduction

Throughout the history of computer science the problem of parsing data to derive it’s

meaning have traditionally been done in software. Parsers are used in a wide variety of

applications including, but not limited to, compiler construction, text analysis, language

translation, and bioinformatic analysis. A great deal of research, time, and effort has gone

into making parsers highly optimized utilities capable of outputting the best results in

the shortest time. However, as existing technologies improve and new technologies emerge

it is becoming clear that the existing class of software parsers is insufficient for handling

all of today’s parsing requirements. For some parsing applications, the need for high-

speed hardware-accelerated parsers has arisen. This dissertation focuses on two of those

applications, network applications and bioinformatic applications, and proposes techniques

for accelerating those applications using custom hardware architectures.

1.1 Parsing in Network Applications

One area that accelerated parsing techniques can be beneficial is in network applications. Up

until recently, there was not much of a need for high-speed parsers to process network traffic.

Most networks merely transported data from one location to another, a task that simply

requires the reading of fixed length address fields in fixed offsets of the data. More complex

data processing, such as content inspection, was typically relegated to lower bandwidth

network links [61], constrained to sampling techniques [41, 54], or handled using clusters of

software-based network appliances [72, 70].

1

However, with new technologies such as content-based routing [4, 14], publish/sub-

scribe networks [5, 60], and semantic networks [31] emerging, faster and more intelligent

techniques will soon be required to process network data. The problem is further com-

pounded by the continual increase in network traffic, which is the result of a increasing

number of users and increasing connection speeds. As more users begin to use these new

technologies the current methods used for content inspection will become insufficient and

new, faster techniques will be required.

This work proposes high-speed hardware architectures for content inspection of net-

work data. The work first examines existing high-speed pattern matching architectures and

utilizes them as a basis for a new architecture. Simple pattern matching is then augmented

with a technique for converting large grammars for regular languages into compact parsers

that enable the derivation of semantic meaning for patterns found within network data.

The compact parsing structure can automatically be generated given a grammar specifica-

tion. Finally, two example applications are provided to illustrate the functionality of the

combined pattern matcher and parsing architectures.

1.2 Parsing in Bioinformatic Applications

Another area that can benefit from accelerated parsing techniques is the area of bioinformat-

ics, the science of analyzing biological data. Many problems in the field of bioinformatics

use common parsing algorithms to compare sequences of biological data. However, the

parsing algorithms used typically have O(n2) or O(n3) computational complexities. When

coupled with the vast amount of biological data that is continually being generated in the

field of bioinformatics, these parsing algorithms can be very time-consuming. On some

inputs an O(n3) parsing algorithm may take days, months, or even years to produce results

using today’s general purpose processors. Such prolonged computations can severely inhibit

research in the areas of bioinformatics that require these computationally complex parsing

algorithms.

Due to the strong interest in the area of bioinformatics, many researchers have gone

to great lengths to achieve faster results. Some researches have developed heuristics that

2

produce results more rapidly at the expense of accuracy [73, 74, 53]. Others have developed

computing clusters in an effort to increase their computing capacity [45], an expensive and

unattainable goal for small research labs.

This work proposes a different solution. More specifically, this work proposes the use

of high-speed custom hardware architectures to accelerate an O(n3) parsing algorithm used

for detecting homologous RNA sequences. The use of a custom hardware architecture can

decrease the time required to parse biological sequences while simultaneously eliminating the

need for costly computing clusters. This, in turn, can help to make research in bioinformatics

accessible to even the smallest research labs. With so much biological data available for

analysis, additional research labs can only help to advance the study of RNA sequences at

a pace that exceeds that of today.

1.3 Reconfigurable Hardware

As mentioned in the previous section, there are many ways in which one might go about

accelerating the solution to different problems. Possibilities include developing heuristics,

using computing clusters, or developing all new algorithms. In addition, since the advent of

reconfigurable hardware, custom hardware architectures have quickly become yet another

option. Reconfigurable hardware offers advantages over both software solutions and ASIC

solutions. A reconfigurable architecture can offer computational power that far exceeds

that of software running on a general purpose processor without sacrificing the flexibility

required for future modifications. Over an ASIC solution, reconfigurable hardware offers a

lower cost for small scale deployments plus the ability to make design modifications when

necessary. However, this typically comes at the expense of a lower operating frequency.

One of the most common and flexible types of reconfigurable hardware is the Field-

Programmable Gate Array (FPGA). FPGAs consist of a uniform sea of configurable logic

blocks (CLBs), each of which can be individually configured and combined with other CLBs

to construct the logic necessary for an architecture.

Many of the architectures presented in this work were developed as reconfigurable

architectures where the logic required is generated given some set of inputs such as a set

3

of strings or grammars. That logic can then be mapped onto reconfigurable hardware

such as an FPGA. This approach allows for highly-pipelined architectures that are tailored

to the exact requirements of the input. However, not all parsing problems require this

type of reconfigurable architecture. One such problem, that of parsing bioinformatic data,

is discussed in Chapter 7. While the architecture in Chapter 7 does have some aspects

which can benefit from the reconfigurability of an FPGA, it is also well-suited for an ASIC

implementation.

1.4 Contributions

The contributions of this dissertation are in the area of techniques and architectures for

high-speed parsing of network and bioinformatic applications. Specific contributions are:

• Pattern Matching

– proposes regular expression extensions to an existing string matching architecture

– introduces a compact and scalable regular expression pattern matching architec-

ture

– provides a comparison of the new pattern matching architecture to existing pat-

tern matching architectures

• Parsing of Regular Languages

– introduces a high-speed architecture for parsing regular languages

– describes a technique to automatically generate regular language parsers from a

grammar specification

– describes an implementation of a content-based router using the proposed regular

language parser

– describes an implementation of an email processor using the proposed regular

language parser

4

• Parsing of Stochastic Context-Free Grammars

– provides an analysis of the hardware required for processing covariance models

in hardware

– introduces a technique for mapping RNA alignment computations directly into

a high-speed pipelined architecture

– introduces a second architecture for RNA alignment that utilizes an array of

custom processors

– describes a technique for scheduling RNA alignment computations onto a pro-

cessor array architecture

– provides an analysis of the scheduling technique used to schedule RNA alignment

computations

– provides an analysis of the scalability of the processor array architecture

– provides a comparison of the processor array architecture to the Infernal soft-

ware package

– provides a discussion on future directions for the processor array architecture

research

1.5 Overview of Dissertation

The remainder of this dissertation is organized into two parts. Part I focuses on parsing

architectures that can be used for network applications. Chapter 2 provides a description of

two existing pattern matching architectures followed by a new scalable regular expression

pattern matcher. This is followed by an approach for hardware-accelerated parsing of regular

languages in Chapter 3. Chapter 4 illustrates two example network applications developed

using the techniques from Chapter 2 and Chapter 3, including the implementation of a

content-based router and an email message parser.

Part II of this dissertation focuses on parsing architectures for RNA secondary struc-

ture alignment. Chapter 5 starts with a background on RNA secondary structure alignment

and the probabilistic parsing algorithm utilized for RNA alignment. Chapter 6 provides a

5

description of a baseline architecture that maps the structure inherent in the parsing algo-

rithm directly onto hardware. This is followed by a more general approach that schedules

computations from the parsing algorithm onto an array of processors in Chapter 7 .

Finally, Chapter 8 provides a brief summary of the work presented in this disserta-

tion. Suggestions for future work are also presented in Chapter 8.

6

Part I

Hardware Architectures for

Pattern Matching and

Parsing in Network Applications

7

Chapter 2

Hardware-Accelerated Pattern

Matching

Parsing consists of two main steps, lexical analysis and syntactic analysis. In this work,

lexical analysis is mapped into hardware using hardware-based pattern matching techniques.

While studying several of the more prominent FPGA-based pattern matching tech-

niques, it was determined that there was an opportunity to combine features from two of

them into a single new technique. The new hybrid pattern matching technique, which is

called Timed Segment Matching (TSM), has greater regular expression capabilities with-

out sacrificing performance or requiring additional resources. The two contributing pattern

matching techniques, the pipelined regular expression chain [56] and the pipelined character

grid [8], are described in detail in this chapter.

Section 2.1 starts by discussing related work in the area of hardware-accelerated pat-

tern matching. Section 2.2 then introduces a pre-decoder common to the pattern matchers

in this chapter. This is followed by a description of the regular expression chain in Sec-

tion 2.3. The second contributing architecture, the pipelined character grid, is described

in Section 2.4. This section also describes modifications that were made to the pipelined

character grid to enable basic regular expression functionality. Finally, Section 2.5 describes

the new TSM technique along with a comparison of it to the contributing architectures.

8

2.1 Related Work

In recent years, a great deal of work has been done in the field of high-speed hardware-

accelerated pattern matchers. In 2001, Sidhu and Prasanna presented a method for mapping

regular expressions into nondeterministic finite automata (NFA) that could then be mapped

onto FPGA hardware [56]. Franklin et al. illustrated how this technique can be used to map

the patterns found in the Snort [59] database onto an FPGA [28]. An additional pattern

matching architecture for Network Intrusion Detection Systems (NIDS) was presented by

Cho in [16]. In [50] regular expression patterns were converted into deterministic finite

automata (DFA) and mapped onto an FPGA. In [20], Clark and Schimmel introduced

the idea of pre-decoding input characters into single bit lines to reduce the number of

comparators required for matching patterns. Sourdis presented the idea of using a pipelined

comparator for matching patterns in [67]. In [8], Baker presented an architecture where

all string comparators are connected to a single pipeline of decoded characters. In other

work, Baker combines a small microcontroller with a bit-split architecture to create a high-

speed regular expression matcher with the flexibility to modify the pattern set on-the-

fly [7]. Work by Bispo expanded on Sidhu’s work in [56] by adding support for Perl-

compatible regular expressions [10]. Other work by Brodie et al. presents a new finite

state machine representation capable of making state transition decisions while processing

multiple characters per cycle [12].

2.2 Pre-Decoded Character Bits

Common among many of the FPGA-based pattern matchers is the idea of pre-decoding

characters. Since the regular expression patterns contain a fixed alphabet of characters, a

pre-decoder can be used to reduce the amount of space required by the design [20]. For

ASCII, the decoder logic is an 8-bit input AND gate matched to the bits needed to identify

each character. An example for the 8-bit ASCII character “A” (hexadecimal 0x41) is shown

in Figure 2.1. Each letter used in the pattern is decoded uniquely to assert a single bit. The

conversion from 8-bits per character to a single bit per character significantly reduces the

9

amount of logic and routing resources required by the design [20]. Since there is a relatively

small penalty for a large fanout in FPGA, the pre-decoders are used in most of the recent

pattern matching architectures.

Data
Input

Decoded
Output

AND

0
1
0
0

0
1

0
0

1

Figure 2.1: Decoder for 8-bit ASCII character “A” (0x41)

2.3 Pipelined Regular Expression Chain

The pipelined regular expression chain is a technique for mapping regular expressions into

a hardware representation of an NFA as described by Sidhu and Prasanna in [56]. A

regular expression chain is constructed from a regular expression using a method similar

to what one might use to construct an NFA from a regular expression. Logic elements are

first allocated for sub-expressions of the regular expression. Those logic elements are then

a

b

Regex = ab Regex = !a

a

Regex = a+

a

Regex = a*

a

Regex = a|b
(a) Sequential (b) Not (c) Alternation / One-or-None (d) One-or-More / Zero-or-More

b

Regex = a?

start

start start start

Figure 2.2: Constructing regular expressions

10

connected together to form a chain of elements capable of matching the complete regular

expression.

The logic elements used to build a regular expression chain are shown in Figure 2.2.

Figure 2.2a illustrates how two characters in a regular expression, each represented using

a single D flip-flop (DFF) and an AND gate, are concatenated to form a chain capable of

matching the string “ab”. The input values “a” and “b” are single bit line representations

of characters that have been decoded from an incoming data stream. On each clock cycle,

as the incoming data stream advances by one character, a potential match signal advances

through a regular expression chain. For example, a start signal is asserted prior to receiving

a data stream containing the string “ab”. On the first clock cycle, the regular expression

chain receives an “a” from the data stream causing the value of the first AND gate to be

valid. On the second clock cycle, the second DFF in the chain is valid and the regular

expression chain receives a “b” from the data stream causing the value of the second AND

gate to be valid. When the second AND gate is valid, the regular expression chain has

indicated that a match has been found. Additional DFFs and AND gates can be added to

the chain to match longer strings.

The example described above can easily be extended to recognize a richer set of

regular expression patterns with functions such as not, or, one-or-none, one-or-more, and

zero-or-more. These functions are represented as logic primitives in Figure 2.2. One can

instantiate combinations of these elementary logic templates in a chain-like fashion, con-

necting the output of one element to the input of the next, to build regular expression

detectors in hardware [56].

2.4 Pipelined Character Grid

An architecture by Baker attempts to optimize the use of logic by buffering the pre-decoded

characters into a pipelined grid structure [8]. Given such a grid of decoded characters, one

can detect patterns by ANDing all of the corresponding decoded bits from different stages

of the pipeline as shown in Figure 2.3. Therefore, the pattern length must be less than or

equal to the length of the pipeline. Since similar patterns tend to reuse the decoded outputs,

11

a

b

c

321
b

0 4

321
c

0 4

a
3

a
2

a
1

a
0

a
4

b

c

b

c

b

c

b

c
Decdata

"cbc"

Pattern 2: "cbc" = c
2

.

 b
1

.

 c
0

"abc"

Pattern 1: "abc" = a
2

.

 b
1

.

 c
0

Figure 2.3: Simple example of pattern matcher using the pipelined character method

the size of the grid is relatively constant. Therefore, the DFF resource requirement for this

method is proportional to the number of patterns instead of the number of characters. Given

four input look-up-tables (LUTs), the number of LUTs for long patterns can be reduced to

a quarter of the pipelined regular expression chain method.

The pipelined character grid can also be scaled by widening the input width. Since

patterns can begin at any given alignment, a duplicate copy of the character decoder and

pipeline registers must be instantiated for each input byte alignment. For each pattern,

its corresponding AND gate that detects a pattern must be replicated for each alignment.

Then the outputs of the AND gates need to be ORed together to detect a match. An

example of how the pipelined character grid can be scaled is shown in Figure 2.4. The

example shown has twice the input width as the example shown in Figure 2.3, therefore

it must scan for each pattern at two possible starting positions. Due to logic reuse, this

architecture tends to yield denser designs as the size of the pattern set increases. However,

this logic compression is enabled by sacrificing the regular expression capabilities possible

with regular expression chains.

12

Dec

Dec

b
00

c
00

a
00

b
01

c
01

a
01

"abc"
1

"abc"
0

"abc"

b
10

c
10

a
10

b
11

c
11

a
11

data
0

data
1

Figure 2.4: Scaled pipelined character grid

2.4.1 Regular Expression Extensions to the Pipelined Character Grid

While examining the pipelined character grid structure, it was determined that the structure

is not flexible enough to allow for the detection of full regular expressions without incurring

excessive additional logic. However, simple modifications to the comparator logic can allow

detection of certain regular expressions involving wild card characters with little or no

additional logic. An inverted delimiter represents all characters that are not a delimiter.

Therefore, using this symbol allows the wild card character to be detected.

A sequence of wild cards can also be detected by adding a clocked set-reset flip-flop

to the comparator logic. Different variations of regular expressions with wild cards are

shown in Figure 2.5. As an example, the flip-flop in Figure 2.5b is set when the “abc”

substring of the pattern matches. The flip-flop remains active while in the “.*” phase of

the match. When the “cc” substring of the pattern followed by a delimiter is detected the

pattern has been detected. Any incoming delimiter will reset the flip-flop.

13

3
c 2

b S

R

5D
a4

D0

1c
c 2

Q

"abc(.*)cc"

1c
c 2

"(.*)cc"

(a) A sequence of wild card characters followed by "cc"

(b) A sequence of wild card characters surrounded by "abc" and "cc"

1
c 0

b S

R

3D
a2

D0

Q

"abc(.*)"

(c) "abc" followed by a sequence of wild card characters

D0

D0

D0

Figure 2.5: Patterns with wild card characters

2.5 Timed Segment Matching

In studying the above techniques, it was discovered that ideas from both architectures can be

merged to create an even more space efficient regular expression pattern matcher [51]. The

new architecture consists of a pipeline of decoded characters in conjunction with primitives

similar to those used by the regular expression chain. This technique allows efficient use of

FPGA resources while still being scalable and capable of matching regular expressions.

A pattern matcher in Baker’s pipelined character grid detects an entire pattern at

one instance by simply connecting all the corresponding decoded bits to a single AND

gate [8]. While examining the design, it became apparent that there was an opportunity

to compress the size of the pipeline by matching small segments of a pattern at a time.

By matching small segments of a pattern on subsequent clock cycles, some of the pipeline

stages are reused allowing the grid structure to be compressed. While formulating the

14

general effect of this, it was determined that the change was equivalent to combining the

pipelined chain with the character grid architecture. Another way to express the approach

is to combine four consecutive characters from a pipelined regular expression chain into a

single LUT/DFF pair. In order to accomplish this, incoming characters are buffered using

a pipelined character grid whose registers are reused for each of the patterns in the pattern

set. This matching technique is referred to as Timed Segment Matching (TSM).

In most FPGAs, a basic block consists of a 4-input LUT followed by a DFF and

other supporting discrete gates. The design with shortest critical path would be the one

where each pipeline stage would consist of only one level of basic blocks. With such a

design criterion, the string comparator to match an N character pattern with AND gates,

as shown in Figure 2.6a, takes a minimum of Σdlog4Nei=1 dN
4i e gates. Note that this number

does not include the logic required by the decoded character pipeline. By connecting the

AND gates in a tree-like structure, the minimum latency is dlog4Ne stages. In addition

to pipelined stages of AND gates, one must consider detection latency to indicate where

the pattern starts or ends. Since pattern lengths can vary in practice, detection signals of

shorter patterns must be delayed by (S − 1) − u clock cycles, where S is the number of

stages in the longest pattern in the patten set and u is the number of stages in the short

pattern of interest. This delay ensures that patterns are detected in the order in which they

appear in the data stream and that short patterns cannot indicate a match prior to longer

patterns that preceded them in the data stream.

On the other hand, the logic architecture for the TSM method is simpler. The

TSM architecture starts with a character pipeline similar to the one used in the pipelined

character grid architecture. String comparators, similar to the regular expression chains

in Sidhu’s architecture, are used to detect each pattern in the pattern set (Figure 2.6b).

However, unlike Sidhu’s architecture, the TSM architecture utilizes the character pipeline

to buffer characters so that multiple characters can be matched by each AND gate. This

allows more efficient use of logic resources. String comparators, like the one shown in

Figure 2.6b are generated by chaining together enough 4-input AND gates for the pattern

of interest. The first AND gate in the chain is used to match the first four characters of

15

a9

b9

c9

a8

b8

c8

a7

b7

c7

a6

b6

c6

a5

b5

c5

a4

b4

c4

a3

b3

c3

a2

b2

c2

a1

b1

c1

a0

b0

c0
decoderdata

a9

b9

c9

a8

b8

c8

a7

b7

c7

a6

b6

c6

a5

b5

c5

a4

b4

c4

a3

b3

c3

a2

b2

c2

a1

b1

c1

a0

b0

c0

c0

c1

c2

b2

b3

b4

a4

a5

a6

7

Z

a

unused

c0

1c
c2

b3

b4

5b
a6

a7

a8

9a

unused

Z

unused

AND

TS

(a)

(b)

Pipelined Character Grid

Figure 2.6: Fast FPGA pattern matchers for “aaaabbbccc” using a pipelined character
grid; (a) ZAND uses AND gate matching and (b) ZTS uses TSM.

the pattern. Subsequent AND gates in the chain only match 3 characters each since they

must also include the result of the previous AND gate. Pseudocode for generating a string

comparator for the TSM architecture is shown in Figure 2.7.

Matching an N character pattern using the TSM method yields a minimum of dN−1
3 e

logic blocks with a latency that is directly proportional to the length of the string. Through

simple analytical observations it can be seen that Σdlog4Nei=1 dN
4i e ≥ dN−1

3 e for N > 0. This

indicates that the logic requirements for string comparators in the TSM architecture are

less than or equal to logic requirements of string comparators in the pipelined character

grid. More interestingly, this is achieved while simultaneously creating an architecture

that is capable of matching both strings and regular expression patterns. Another positive

consequence of this method is that information about a match is carried through the pipeline

allowing the architecture to keep track of partial matches as they occur. This allows the

TSM architecture to indicate that a match has occurred immediately after the last character

of a pattern enters the pipeline, regardless of the length of the pattern.

16

Figure 2.7: Pseudocode to generate a string comparator for the TSM architecture

2.5.1 Regular Expression Pattern Detection

Simple AND gate based detection requires a pipelined character grid where the number of

pipeline stages is greater than or equal to the longest pattern. Since regular expressions can

represent strings that are infinitely long, it is impossible for the simple AND gate matcher

and character grid to match all regular expressions. However, TSM modifies the detection

method by adding a structure similar to the pipelined regular expression chain. Given such

a pattern matching structure, the primitives for the pipelined regular expression chain can

be adapted for use in the TSM architecture. The basic regular expression operations are

illustrated in the examples shown in Figure 2.8. The regular expression operations (e.g.

zero-or-more) are shown in the shaded regions. The operations are shown as part of larger

patterns to better illustrate how they are used.

Both the zero-or-more operation (Figure 2.8a) and the one-or-more operation (Fig-

ure 2.8b) require feedback paths that allow the chains to iteratively match repeating sub-

strings. Additionally, these two operations require that additional registers be placed in

that feedback path. The additional registers ensure that the pipelined character grid has

17

b2

a3

z1

c2
c1
c0

b) z1 = aaaa(ab)+ccc

a4
a3

a5

a6

a3
a2

a4

z3

c2
c1

c3
d2

b4
c0

a5

a5

a4
a3
a2

a5

b3
c2

a4

z0

c2
c1
c0

a) z 0 = aaaa(abc)*ccc

a4
a3
a2

b3
c2

a4 z2

c2
c1

c) z 2 = aaaa(abc)?ccc d) z3 = (aaaa | abcd)ccc

c0

a5

Figure 2.8: Regular expression operations in the timed segment matching architecture

enough time to receive the characters required for the next iteration of the regular expres-

sion operation. Note that the total number of registers required in the feedback path is

equal to the number of characters involved in the given regular expression operation. For

example, in Figure 2.8a the regular expression “aaaa(abc)*ccc” contains the zero-or-more

operation. The number of characters included in the zero-or-more operation is three. This

means that the total number of registers required in the feedback path is also three.

The regular expression operation in Figure 2.8c is the one-or-none operation. This

operation does not include a feedback loop, but it does require additional registers similar

to the zero-or-more and one-or-more operations. Again, the number of additional registers

required is equal to the number of characters included in the regular expression operation.

The final operation shown in Figure 2.8d, the alternation operation, is the simplest of the

regular expression operations. It requires the addition of only a single OR gate to the chain.

No additional delay registers are required.

Accordingly, it is easy to see how more complex regular expressions can be detected

using the basic components for each of the regular expression operations. An example using

both the zero-or-more operation and the alternation operation is shown in Figure 2.9.

Notice that the different size substrings in the alternation operation require a different

number of delay registers. Thus an extra DFF is inserted at the input of the larger substring.

18

c1

b2

z0

c2
c1
c0

a1

a3

b2

a4
a3
a2

a5

z0 = aaaa(abc | ba)*ccc

Figure 2.9: TSM example for “aaaa(abc|ba)*ccc”

2.5.2 Scalable Architecture

The TSM architecture can also be scaled while still maintaining its small size and the ability

to scan for regular expression patterns. First, the character grid pipeline must be dupli-

cated for each character of the input width to provide decoded bits for every alignment, as

shown in Figure 2.10. Then the pipelined regular expression chains are constructed for each

alignment. Although there are specific techniques to handle different regular expressions,

this section focuses on the architecture for zero-or-more. Once its concept is understood,

one can easily elaborate to build circuits for other operations (e.g. “a+” is equivalent to

“aa*”).

a93

b93

c93

a83

b83

c83

a73

b73

c73

a63

b63

c63

a53

b53

c53

a43

b43

c43

a33

b33

c33

a23

b23

c23

a13

b13

c13

a03

b03

c03

decoderdata3

a9

b9

c9

a8

b8

c8

a7

b7

c7

a6

b6

c6

a5

b5

c5

a4

b4

c4

a3

b3

c3

a2

b2

c2

a1

b1

c1

a0

b0

c0

Scaled Pipelined Character Grid

a92

b92

c92

a82

b82

c82

a72

b72

c72

a62

b62

c62

a52

b52

c52

a42

b42

c42

a32

b32

c32

a22

b22

c22

a12

b12

c12

a02

b02

c02

decoderdata2

a9

b9

c9

a8

b8

c8

a7

b7

c7

a6

b6

c6

a5

b5

c5

a4

b4

c4

a3

b3

c3

a2

b2

c2

a1

b1

c1

a0

b0

c0

a91

b91

c91

a81

b81

c81

a71

b71

c71

a61

b61

c61

a51

b51

c51

a41

b41

c41

a31

b31

c31

a21

b21

c21

a11

b11

c11

a01

b01

c01

decoderdata1

a9

b9

c9

a8

b8

c8

a7

b7

c7

a6

b6

c6

a5

b5

c5

a4

b4

c4

a3

b3

c3

a2

b2

c2

a1

b1

c1

a0

b0

c0

a90

b90

c90

a80

b80

c80

a70

b70

c70

a60

b60

c60

a50

b50

c50

a40

b40

c40

a30

b30

c30

a20

b20

c20

a10

b10

c10

a00

b00

c00

decoderdata0

a9

b9

c9

a8

b8

c8

a7

b7

c7

a6

b6

c6

a5

b5

c5

a4

b4

c4

a3

b3

c3

a2

b2

c2

a1

b1

c1

a0

b0

c0

3

Figure 2.10: Wide pipeline grid for 4× scaled architecture

19

For a fixed string, the matching circuitry at each byte offset can be treated as

an independent engine until they are ORed together at the end. However, the logic design

complexity can grow rapidly when one attempts to scale regular expressions. This is because

expressions that immediately follow alternation, one-or-none, one-or-more, or zero-or-more

operations may start at multiple alignments. When the matchers are instantiated for all

possible alignments, the entire circuitry can become exponentially large. Fortunately, most

of the instantiations turn out to be duplicated logic which can be combined and reused.

To clearly understand the design process, two examples of the zero-or-more regular

expression operation on a 4-byte input datapath are presented. Four copies of the character

grid are instantiated as shown in Figure 2.10. The pre-decoded characters bits from these

grids are then used by the pattern matching pipelines. Construction of a scaled chain works

in a similar fashion to that of the single character wide version, by concatenating AND gates

together (or regular expression primitives as shown in previous sections). Determining the

location of the character grid from which to retrieve a character is done in a similar fashion to

the single character wide TSM architecture. However, in the scaled version, four characters

advance through the character grid on each clock cycle. This means that if the scaled chain

is currently examining the data2 position of stage 0 in the scaled pipeline grid, on the next

clock cycle it must examine the data1 position of stage 1. This ensures that all characters

get examined while processing a data stream.

The simplest example of a scaled regular expression pattern matcher in the TSM

architecture occurs when the regular expression operation includes the same number of

characters as the width of the input. In the example in Figure 2.11a, notice that the zero-

or-more regular expression operation (“*”) is operating on the four character string “bbbb”.

In this case, the substring in the “*” operation is the same length as the width of the data

input. Since any number of iterations of the “*” operation does not change the alignment

of the immediately following substring “ccc”, the pattern matchers do not cross over to the

other parallel matchers. In the example in Figure 2.11b, the “*” is operating on the single

character string “b”. In this case, the substring in the “*” operation is a single character.

20

b11
b10
b03
b02

c10
c03

c11

a03

a02

a10

b12
b11
b10
b03

c11
c10

c12

a10

a03

a11

b13
b12
b11
b10

c12
c11

c13

a11

a10

a12

b20
b13
b12
b11

c13
c12

c20

a12

a11

a13

X

X = aaa(bbbb)*ccc

b20

c13
c12

c20

a12

a11

a13

b13

c12
c11

c13

a11

a10

a12

b12

c11
c10

c12

a10

a03

a11

b11

c10
c03

c11

a03

a02

a10

Y

Y = aaa(b)*ccc

Figure 2.11: Examples of the zero-or-more regular expression operation in the scaled TSM
architecture

Therefore, every iteration of “b” changes the expected alignment for the “ccc” substring.

As a result, every matcher is connected to its adjacent matcher.

The above examples are regular expressions that are less than or equal to the width

of the pipeline. However, the TSM architecture is not restrictive. For substrings that are

greater than the width of the pipeline, the substring can simply be broken down into smaller

substrings while still applying the rules described in the previous sections. The example

in Figure 2.12 shows the iterative loop required for a regular expression operation that is

larger than the pipeline width.

2.5.3 Implementation

Using an automatic VHDL generator, hardware was generated for the five different pattern

matching architectures described in this chapter. The architectures implemented in this

21

a
11

b
10

b
03

a
02

c
11

d
10

d
03

c
02

Figure 2.12: TSM architecture for ...“(abbacddc)*”...

section include the 8-bit regular expression chain1, the 8-bit and 32-bit pipelined character

grid2, and the 8-bit and 32-bit version of timed segment matcher architectures. To evaluate

the five architectures, each was generated with five different pattern sets. The pattern sets

range in size from 300 bytes to 3000 bytes.

Additionally, architectures were generated that scan for full regular expressions using

the 8-bit regular expression chain, and the 8-bit and 32-bit TSM architectures. The regular

expressions were randomly generated in the form of “abcd(efgh)*ij”. Because the 8-bit and

32-bit pipelined character grid architectures do not support regular expressions, no regular

expression hardware was generated for those architectures.

String Patterns

The hardware for each pattern set was synthesized, placed, and routed on Xilinx Virtex 4

LX200 -11 chips. Synplicity’s Synplify Pro v8.1 was employed for synthesis. Placing and

routing was completed using version 7.1 of the Xilinx back-end tools. Tables 2.1 and 2.2

show the complete results for all the different architectures for each of the pattern sets that

were implemented.

As with the regular expression chain and the pipelined character grid, the TSM

architecture presented here allows for very high clock frequencies. Both the 8-bit and 32-

bit TSM architectures are capable of running at similar clock frequencies to those of the

equivalent size chain or pipelined grid architectures. These high clock frequencies translate

to throughputs of up to 3.46 Gbps for the 8-bit architecture and 12.90 Gbps for the 32-bit
1Implemented as described by Sidhu [56]

2Implemented as described by Baker [8]

22

8-bit Input (1 Character Wide)

Regex Chain Pipelined Grid TSM

of
Chars

Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs
Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs
Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs

300 436 3.49 319 1.06 471 438 3.50 172 0.57 730 432 3.46 168 0.56 600

600 433 3.46 572 0.95 747 399 3.19 266 0.44 1032 429 3.43 290 0.48 864

1200 441 3.53 1016 0.85 1212 436 3.49 422 0.35 1508 430 3.44 504 0.42 1289

2100 426 3.41 1672 0.80 1886 403 3.22 684 0.33 2197 435 3.48 856 0.41 1921

3000 411 3.29 2287 0.76 2503 420 3.36 931 0.31 2818 432 3.46 1202 0.40 2497

8-bit Input (1 Character Wide)

Regex Chain Pipelined Grid TSM

of
Chars

Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs
Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs
Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs

300 436 3.49 319 1.06 471 438 3.50 172 0.57 730 432 3.46 168 0.56 600

600 433 3.46 572 0.95 747 399 3.19 266 0.44 1032 429 3.43 290 0.48 864

1200 441 3.53 1016 0.85 1212 436 3.49 422 0.35 1508 430 3.44 504 0.42 1289

2100 426 3.41 1672 0.80 1886 403 3.22 684 0.33 2197 435 3.48 856 0.41 1921

3000 411 3.29 2287 0.76 2503 420 3.36 931 0.31 2818 432 3.46 1202 0.40 2497

Table 2.1: Device utilization for pipelined regular expression chain and pipelined character
grid architectures

32-bit Input (4 Characters Wide)

Pipelined Grid TSM

of
Chars

Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs
Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs

300 398 12.74 586 1.95 1609 403 12.90 542 1.81 1153

600 382 12.21 913 1.52 2292 391 12.52 942 1.57 1731

1200 368 11.76 1511 1.26 3426 395 12.64 1676 1.40 2766

2100 377 12.05 2433 1.16 5049 374 11.98 2773 1.32 4315

3000 359 11.48 3372 1.12 6576 384 12.29 3832 1.28 5831

32-bit Input (4 Characters Wide)

Pipelined Grid TSM

of
Chars

Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs
Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs

300 398 12.74 586 1.95 1609 403 12.90 542 1.81 1153

600 382 12.21 913 1.52 2292 391 12.52 942 1.57 1731

1200 368 11.76 1511 1.26 3426 395 12.64 1676 1.40 2766

2100 377 12.05 2433 1.16 5049 374 11.98 2773 1.32 4315

3000 359 11.48 3372 1.12 6576 384 12.29 3832 1.28 5831

Table 2.2: Device utilization for the architectures

architecture. It is worth noting that as the size of pattern sets increase, the clock frequency

for most of the different architectures decreases slightly. This decrease in frequency is

attributed to the increasing fanout of the decoded character bits as the size of the pattern

set increases.

Including all of the decoder logic, the 8-bit TSM architecture utilizes only 0.40

LUTs/byte of the pattern for the 3,000 byte pattern set. This is almost half the size of the

regular expression chain architecture which requires 0.76 LUTs/byte for the same pattern

set. The 8-bit pipelined character grid is slightly smaller than the TSM architecture, requir-

ing only 0.31 LUTs/byte. The 32-bit TSM architecture and the 32-bit pipelined character

grid are also similar in size, requiring 1.28 LUTs/byte and 1.12 LUTs/byte respectively. The

graph in Figure 2.13 shows the number of LUTs required by each of the different architec-

tures. The graph shows that the LUT resource requirement for the 8-bit regular expression

chain is significantly larger than either of the other two 8-bit architectures. The 8-bit TSM

23

architecture, while slightly larger than the 8-bit pipelined character grid, manages to stay

close in size even with the added ability to do regular expression pattern matching.

0

500

1000

1500

2000

2500

3000

3500

4000

300 800 1300 1800 2300 2800

Number of Pattern Bytes

N
u

m
b

er
 o

f
L

U
T

s

8-bit chain 8-bit pipeline 32-bit pipeline 8-bit hybrid 32-bit hybrid

0

500

1000

1500

2000

2500

3000

3500

4000

300 800 1300 1800 2300 2800

Number of Pattern Bytes

N
u

m
b

er
 o

f
L

U
T

s

8-bit chain 8-bit pipeline 32-bit pipeline 8-bit hybrid 32-bit hybrid

Figure 2.13: LUTs vs. Number of Pattern Bytes

The number of LUTs/byte achieved by all of the architectures decreases as the size

of the pattern set increases. This is because as the size of the pattern set increases, all of

the decoder logic required by the architectures becomes a smaller and smaller percentage

of the overall logic required. This means that the number of LUTs/byte for all of the

architectures will asymptotically approach some value representing the minimum space

requirements achievable by the architecture as shown in Figure 2.14. The graph also shows

that the lowest LUT resource utilization for the 8-bit and 32-bit TSM architectures is

comparable to that of the 8-bit and 32-bit pipelined character grid architectures.

The timed segment matching designs are the smallest architecture in terms of DFF

utilization. For the largest pattern set, the 8-bit TSM architecture requires fewer DFFs

than either of the other two 8-bit architectures. The 32-bit TSM architecture also requires

fewer DFFs than the 32-bit pipelined character grid as shown in Figure 2.15.

24

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

300 800 1300 1800 2300 2800

Number of Pattern Bytes

L
U

T
s

p
er

 B
yt

e

8-bit chain 8-bit pipeline 32-bit pipeline 8-bit hybrid 32-bit hybrid

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

300 800 1300 1800 2300 2800

Number of Pattern Bytes

L
U

T
s

p
er

 B
yt

e

8-bit chain 8-bit pipeline 32-bit pipeline 8-bit hybrid 32-bit hybrid

Figure 2.14: LUTs/Byte vs. Number of Pattern Bytes

0

1000

2000

3000

4000

5000

6000

7000

300 800 1300 1800 2300 2800

Number of Pattern Bytes

N
u

m
b

er
 o

f
D

F
F

s

8-bit chain 8-bit pipeline 32-bit pipeline 8-bit hybrid 32-bit hybrid

0

1000

2000

3000

4000

5000

6000

7000

300 800 1300 1800 2300 2800

Number of Pattern Bytes

N
u

m
b

er
 o

f
D

F
F

s

8-bit chain 8-bit pipeline 32-bit pipeline 8-bit hybrid 32-bit hybrid

Figure 2.15: DFFs vs. Number of Pattern Bytes

25

By calculating trend lines for both the number of LUTs and DFFs required for each

architecture, it becomes clear that the DFFs are the limiting factor in the number of pattern

bytes that can be programmed into the FPGA. Therefore, by having a smaller DFF resource

requirement, the TSM architecture will be able to scan for larger pattern sets than both the

regular expression chain and the pipelined character grid architecture. Using the trend line,

the maximum number of strings that the Xilinx Virtex 4 LX200 FPGA can accommodate

using the TSM architecture can be calculated to be approximately 31K patterns, given that

the patterns have an average length of 8 bytes.

Regular Expression Patterns

In addition to fixed strings, regular expression pattern matchers were generated using the 8-

bit regular expression chain, and the 8-bit and 32-bit TSM architectures. Each architecture

was generated to scan for 300 regular expression patterns in the form “abcd(efgh)*ij”. The

results for the architectures are shown in Table 2.3.

The results clearly show that 8-bit TSM architecture is much smaller than the 8-bit

chain architecture in both LUT and DFF resource utilization when scanning for regular

expressions.

8-bit Input (1 Character Wide) 32-bit Input (4 Characters Wide)

Regex Chain Pipelined Grid TSM Pipelined Grid TSM

LUTs 2913 N/A 1409 N/A 6676

DFFs 3087 N/A 1748 N/A 5395

8-bit Input (1 Character Wide) 32-bit Input (4 Characters Wide)

Regex Chain Pipelined Grid TSM Pipelined Grid TSM

LUTs 2913 N/A 1409 N/A 6676

DFFs 3087 N/A 1748 N/A 5395

Table 2.3: Device utilization when scanning for regular expressions

2.6 Chapter Summary

This chapter described two well-known pattern matching architectures, the regular expres-

sion chain and the pipelined character grid. Regular expression extensions were proposed

to enhance the functionality of the pipelined character grid architecture. Additionally,

a hybrid architecture which combines attributes of the regular expression chain and the

26

pipelined character grid was presented. The hybrid TSM architecture maintains the abil-

ity to search for regular expression patterns and requires fewer hardware resources than

either of the two contributing architectures. Additionally, the TSM architecture maintains

the high performance of the two contributing architectures with a maximum throughput of

about 12 Gbps.

27

Chapter 3

Hardware-Accelerated Regular

Language Parsing

While pattern matching may be sufficient for network applications such as intrusion detec-

tion systems and spam filters, it may not be powerful or expressive enough for many other

applications. One such application is content-based routing. When a spam filter detects

a false positive the end result may be that a valid email is incorrectly labeled as spam.

However, false positives in a content-based router may have many undesirable affects, in-

cluding improperly routed packets, excessively high latencies, packets that never reach their

destinations, and networks that are bogged down by incorrectly multicasted packets. By

incorporating a parser into the network a higher level of understanding of streaming data

can be achieved. This chapter describes a fast regular language parser that is designed to

augment the functionality of the pattern matchers described in Chapter 2 with minimal

additional logic. The regular language parser can add semantic meaning to patterns that

are found within streaming data, thereby helping to alleviate the aforementioned problems

and other problems that may arise from misinterpreting data. Chapter 4 shows how these

techniques can be used in the implementation of various network applications.

28

3.1 Related Work

Hardware-accelerated parsing has not been an extensively studied problem. However, there

does exist a small amount of previous work. Hardware-based parsers have been implemented

using the Cocke-Younger-Kasami (CYK) algorithm [18, 19]. While these implementations

do manage to decrease the O(n3) time complexity of the CYK algorithm to O(n2), the

space required by the algorithm remains unchanged at O(n2), where n is the length of

the input string. Such a large space requirement makes the CYK algorithm unsuitable for

network applications that need to maintain parsing information for millions of network flows

simultaneously.

Other previous work includes a hardware-based implementation of an Earley parser [42].

Again, the space requirements for this table driven parsing algorithm make it unsuitable

for network applications.

More recently, work by Cho presents two architectures, one for an LL(1) parser and

another for an LR(1) parser [15]. Both architectures take an approach similar to their

software counterparts using table lookups in conjunction with a stack to parse the input.

3.2 Architecture for High-Speed Regular Language Parsing

Unlike other parsers which use a table to look up the next state of the parser, the regular

language parser presented here converts the rules of a large grammar for a regular language

into a nondeterministic finite automaton (NFA) [52]. Representing the grammar as an NFA

has two main benefits. First, it allows the grammar to be converted into a highly pipelined

logic structure that can be mapped directly onto an FPGA. An NFA representation also

allows the parser to exploit the parallelism of the FPGA by exploring all possible parsing

paths in parallel. Additionally, an NFA generally has fewer states than its deterministic

counterpart, thus allowing for a more compact representation.

To model the grammar as an NFA, the well-known FIRST and FOLLOW set al-

gorithms for predictive parsers [1] are used. These algorithms accept a grammar as input

and output all the information necessary to construct an NFA. As defined in [6], FIRST (α)

29

changelonger no and , until

][][][then

)1 if(or all are if

][][][then

) if(or all are if

][][][then

)1 if(or all are if

1from jeach ,to1fromeachFor

][hen t

)0if(or nullable all areif

productioneach For

repeat

}{][

symbol naleach termiFor

11

1

11

1

1

nullableFOLLOWFIRST

YFIRSTYFOLLOWYFOLLOW

=ji+nullable ... YY

XFOLLOWYFOLLOWYFOLLOW

i=knullable ... YY

YFIRSTXFIRSTXFIRST

i=nullable ... YY

 to k i+ k i

trueXnullable

 k= ... Y Y

 ... YY X

ZZFIRST

 Z

jii

ji

ii

ki

i

i

k

k

∪←

∪←

∪←

←

→

←

−+

+

−

Figure 3.1: Algorithm for finding FIRST () and FOLLOW () sets from a production list [6]

is the set of all terminal symbols that can begin any string derived from α. FOLLOW (α)

is defined as the set of terminal symbols that can immediately follow α. The FIRST and

FOLLOW set algorithms are shown in Figure 3.1. The sample grammar shown in Figure 3.2

is used to illustrate these algorithms. The FIRST and FOLLOW sets for this grammar are

displayed in Table 3.1.

No. Production
1 S → L done
2 L → received from L | received by

Figure 3.2: Sample grammar for a regular language

Using the FIRST and FOLLOW sets, an NFA for the grammar can be constructed

as follows. First, a state is created for each of the terminal symbols in the grammar,

including the end-of-input symbol ($) which represents the accepting state. In the sample

grammar, the terminal symbols are received, from, by, and done. Then, for each terminal

symbol, a transition is created to each of the terminal symbols in its FOLLOW set. Finally,

30

Symbol FIRST Set FOLLOW Set
S { received } { $ }
L { received } { done }

received { received } { from , by }
from { from } { received }
by { by } { done }

done { done } { $ }

Table 3.1: FIRST and FOLLOW sets for symbols in the grammar

the start states (multiple start states are possible) are identified. The FIRST set of the

starting symbol identifies all of the terminal symbols that can start the grammar. The

corresponding state for each starting symbols is identified as a starting state. Figure 3.3

shows the NFA for the sample grammar in Figure 3.2.

A similar approach can be used to map the grammar directly into hardware. To build

the hardware logic for the regular language parser, each terminal symbol in the grammar

is represented using a simple primitive. The primitive, which can be seen in Figure 3.4,

received received

from

by

done

rq

fq bq

d
q

$
q

Figure 3.3: NFA for grammar in Figure 3.2

received

from by

start

done

accept

primitve

Figure 3.4: Hardware parser for grammar
shown in Figure 3.2

31

consists of a single register and an AND gate. The inputs to each of the AND gates include

the current state of the primitive (i.e. the output of the register) and a detection signal from

a pattern matcher. When the pattern matcher detects a string which is representative of a

terminal symbol in the grammar, it asserts a signal which is connected to the AND gate of

the primitive for that symbol. By separating the pattern matcher from the regular language

parser, redundant hardware can be eliminated for grammars that have multiple instances of

patterns. The output of each AND gate represents a transition in the state of the grammar.

Transitions are again determined from the FOLLOW sets of each of the terminal symbols

in the grammar. The output of an AND gate for a terminal symbol is routed to the input

of each of the primitives in its FOLLOW set. If the register of a primitive requires multiple

inputs, an OR gate is used to combine the inputs into a single input for the primitive. As

with the NFA model, the FIRST set of the starting symbol of the grammar provides the

initial input to the parsing structure. This input can be asserted at the beginning of a data

stream to initialize the parsing structure.

While this technique does work for the grammar shown in Figure 3.2, it may not

work for all grammars. For example, adding the rule S → not received done to the

grammar results in the addition of done into the FOLLOW set of received. This, in turn,

results in the addition of a connection between the output of the received primitive and

the input of the done primitive in Figure 3.4. The addition of this connection results in

a parsing structure that accepts invalid inputs. For example, the new parsing structure

accepts the input received done, which is not defined by the grammar. To alleviate this

problem, the original grammar can be modified by making each occurrence of a terminal

symbol a unique symbol that is assigned its own primitive in the parsing structure. To

illustrate, Figure 3.5 shows the original grammar after adding the rule S → not received

done and making each terminal symbol unique.

No. Production
1 S → L done1 | not1 received1 done2

2 L → received2 from1 L | received3 by1

Figure 3.5: Sample grammar for a regular language

32

start

done1

accept

done2

received1

not1

by1

received3

from1

2received

Figure 3.6: Hardware parser for grammar in
Figure 3.5

start

accept

received1

1

by1from1

donez

receivedz not

Figure 3.7: Simplified parsing structure for
grammar in Figure 3.5

The parsing structure that is generated for this new grammar using the FIRST and

FOLLOW set technique described earlier is shown in Figure 3.6. Note that there is now a

primitive for each occurrence of each terminal symbol in the grammar and the structure only

accepts the intended language. This structure can subsequently be minimized to decrease

the number of primitives required for the parsing structure. For each terminal symbol X, if

the input sets to Xi and Xj are equivalent, the primitives for Xi and Xj can be merged into

a single primitive. This can be seen in Figures 3.6 and 3.7 where received2 and received3

are merged into receivedz. Primitives for terminal symbols Xi and Xj can also be merged

if the FOLLOW sets of Xi and Xj are equivalent. This is shown in Figures 3.6 and 3.7

where done1 and done2 are merged into donez. Figure 3.7 shows the parsing structure for

the grammar in Figure 3.5 after being minimized.

When combined with a pattern matcher, the hardware parser described in this chap-

ter is capable of maintaining the state of a data stream. While doing so, the parser can also

forward pattern information along with the state of the parsing structure for each pattern

to a back-end for further processing. The back-end can utilize this information to take

33

appropriate actions for the desired application. The following chapter describes how this

technique can be used to develop intelligent network applications.

3.3 Chapter Summary

This chapter described a high-speed architecture for parsing regular languages. The ar-

chitecture can be automatically generated from a Lex/Yacc style grammar. A method for

generating the architecture using the FIRST and FOLLOW set algorithms was also pre-

sented. The regular language parser can be combined with a pattern matcher to provide

syntactic information to external modules.

34

Chapter 4

Applications of Regular Language

Parser

To help illustrate the hardware-based parsing techniques described in Chapters 2 and 3

and how they can be used in intelligent network applications, this chapter describes the

implementation of two high-speed network applications. The first application is a content-

based router that uses the fast regular language parser to parse packet payloads and makes

intelligent routing decisions based on packets’ contents. The second application is a data

filter that is used to extract the message contents of in-flight email messages while discarding

header information and attachments.

4.1 Background

All of the applications described in this chapter were implemented on the Field-Programmable

Port Extender (FPX) platform and utilize a set of layered protocol wrappers. This section

provides a brief background on the implementation platform.

4.1.1 Field-Programmable Port Extender

The FPX is a general purpose, reprogrammable platform that performs data processing in

FPGA hardware [46]. As data packets pass through the device, they can be processed in the

35

hardware by user-defined, reprogrammable modules. Hardware-accelerated data processing

enables the FPX to process data at multi-gigabit per second rates, even when performing

deep processing of packet payloads.

The FPX contains two FPGAs. A Xilinx Virtex XCV600E FPGA routes packets

into and out of the FPX. It also controls the routing of packets to and from the application

FPGA. The application FPGA, which executes the user-defined hardware modules, is a

Xilinx Virtex XCV2000E (upgraded from an XCV1000E that was used on the first version

of the platform). The FPX also contains two banks of 36-bit wide Zero-Bus-Turnaround

Static RAM (ZBT SRAM) and two banks of 64-bit PC-100 Synchronous Dynamic RAM

(SDRAM). Fully configured, the FPX can access four parallel memories with a combined

capacity of 1 gigabyte.

4.1.2 Layered Protocol Wrappers

To provide a higher level of abstraction for packet processing, a library of layered protocol

wrappers was implemented for the FPX [11]. They use a layered design and consist of

different processing circuits within each layer. At the lowest level, a cell processor processes

raw cells between network interfaces. At the higher levels, a frame processor reassembles

and processes variable length frames while an IP processor processes IP packets. Figure 4.1

shows the configuration of an application module in the protocol wrappers.

Data
Packets

xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Application
Module

Frame Processor

Cell Processor

IP Processor

Data
Packets

Figure 4.1: Router in protocol wrappers

36

4.1.3 TCP Protocol Processor

The TCP-Processor is an FPGA based TCP protocol processor [63]. It was designed and im-

plemented to support the processing of up to 8 million simultaneous TCP flows in high-speed

networks. The TCP-Processor provides stateful flow tracking and TCP stream reassembly

for network applications which process TCP data streams. Additionally, the TCP-Processor

includes encoder and decoder circuits which enable it to serialize a TCP flow along with cor-

responding flow information. This serialized information can then be transported off-chip

to multiple other FPGAs for packet processing.

4.2 Content-Based Router

As the Internet continues to expand, researchers are starting to look at content-based rout-

ing as a mechanism to improve upon and/or to add new services for managing the distribu-

tion of data. Content-based routing improves upon the existing Internet model by giving

users the freedom to describe routing schemes in the application layer of network pack-

ets. Content-based routers then inspect and interpret packet payloads and route packets

according to the content of the packet.

One example of this type of interaction can be seen in publish/subscribe networks [5,

60]. Users can subscribe to information that is interesting to them by sending high level

descriptions to routers using the application layer (layer 7) of the packet. Content-based

routers then interpret the subscription packet content and route all messages with matching

contents to the subscriber. Some examples for publish/subscribe networks include the

routing of stock quotes, distribution of weather reports, and streaming video broadcasts.

Content-based routing can also be used for applications such as load balancing in web server

clusters [17], or routing of online transactions to the appropriate shipping warehouse. It is

this class of content-based routing applications that is the focus of this implementation.

To route packets based on values that appear in the payload, efficient methods for

packet payload processing are needed. Carzaniga, Rutherford, and Wolf have presented

a software based routing algorithm [14]. However, due to the processing power required

by deep content inspection, software approaches are unlikely to maintain the throughput

37

of multi-gigabit networks. This can potentially limit the adoption of content-based net-

works. As such, a reconfigurable hardware architecture capable of fast, intelligent content

inspection was developed.

The remainder of this section describes how the fast regular language parser de-

scribed in Chapter 3 was used to implement a high-speed content-based router. The mes-

sage format for the content-based router implementation is the XML format defined in

Figure 4.2. A Lex/Yacc style version of this XML specification is shown in Figure 4.3. This

grammar is passed into a custom compiler that automatically generates the VHDL required

for the architecture. The layout of the main components of the architecture, including a

pattern matcher, a parsing structure, and a routing module, is shown in Figure 4.4. The

<!ELEMENT card (routekey, name, title?, phone?)>
<!ELEMENT routekey (#PCDATA)>
<!ELEMENT name ((first, last) | (last, first))>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT phone (#PCDATA)>

Figure 4.2: Document Type Definition (DTD) for content-based router implementation

STRING [a-zA-Z0-9-]+
%%
card: "<card>" routekey name title phone "</card>"
routekey: "<routekey>" route "</routekey>"
route: routefirst | routelast
routefirst: "first"
routelast: "last"
name: "<name>" nameN "</name>"
nameN: nameFL | nameLF
nameFL: firstFL lastFL
nameLF: lastLF firstLF
firstFL: "<first>" STRING "</first>"
lastFL: "<last>" STRING "</last>"
lastLF: "<last>" STRING "</last>"
firstLF: "<first>" STRING "</first>"
title: "<title>" STRING "</title>" |
phone: "<phone>" STRING "</phone>" |
%%

ε
ε

Figure 4.3: Lex/Yacc style grammar

38

architecture has been fully implemented on the FPX platform which allows for rapid de-

ployment and testing in gigabit-rate networks.

Pattern
Matcher

...

Grammar

Parsing
Structure

data
packets

32
Token
FIFO

...

Patterns

Routing
Module

data
packets

Figure 4.4: Content-based router architecture

4.2.1 Pattern Matcher

Data packets enter the content-based router after being processed by the layered protocol

wrappers. The first stage in processing each packet for routing is pattern matching. The

modular design allows a variety of techniques to be used for pattern matching. For this

implementation, a modified pipelined character grid [8] was employed, which has been scaled

to accept a four character wide (32-bit) input. Scaling is achieved by replicating the pipeline

until there is one pipeline for each character in the input width. A detailed block diagram

of the decoded character pipeline is shown in Figure 4.5.

The scaled pipeline receives four characters (32-bits) per clock cycle from the layered

protocol wrappers. Characters 1, 2, 3, and 4 are passed into pipeline alignments 3, 2, 1,

and 0 respectively. Before entering the pipeline registers, characters are passed into an

8-to-256-bit decoder. The 256-bit output represents a single bit line for each of the 256

possible extended-ASCII characters. This decreases the routing resource required for string

detectors. The decoded character lines are passed into the pipeline registers as illustrated

in Figure 4.5. The pipelined character grid can detect patterns that are less than or equal

39

m
3

m
4

...

a
b
c

m
1

m
2

256-bit decoded registers

m
0

8-bit
 to

 256-bit
decoder

32

Alignment 0

Alignment 1

Alignment 2

Alignment 3

[23:16]

[15:8]

[7:0]

...

[32:24]

One copy for each alignment

data

Pattern Matcher

Figure 4.5: Diagram of pattern matcher pipeline

to the length of the pipeline. Additionally, the pipeline only needs to be as long as the

longest pattern in the grammar.

The actual pattern matching is executed by a series of string detectors. A string

detector is generated for each of the patterns in the input grammar. For the example gram-

mar in Figure 4.3 there are 17 unique patterns: <card>, </card>, <routekey>, </routkey>, first,

last, <name>, </name>, <first>, </first>, <last>, </last>, <title>, </title>, <phone>, </phone>,

and STRING. Each of these patterns can be detected by ANDing together the appropriate

bits from the decoded character pipeline. Since this design uses a scaled pipeline, the pres-

ence of a pattern needs to be checked at each possible starting alignment. A pattern is

detected if it is found at any one of the four possible starting alignments. Figure 4.6 il-

lustrates the logic required to match the patten <card>. The notation shown in Figure 4.6

is Register[Alignment][Character]. For example, m1[0][c] represents the ‘c’ character bit of

register m1 in alignment 0. A single bit line is output from the pattern matcher to the

parser structure for each of the string detectors.

40

m
1[

1]
[<

]
m

1[
0]

[c
]

m
0[

3]
[a

]
m

0[
2]

[r
]

m
0[

1]
[d

]
m

0[
0]

[>
]

m
1[

2]
[<

]
m

1[
1]

[c
]

m
1[

0]
[a

]
m

0[
3]

[r
]

m
0[

2]
[d

]
m

0[
1]

[>
]

m
1[

3]
[<

]
m

1[
2]

[c
]

m
1[

1]
[a

]
m

1[
0]

[r
]

m
0[

3]
[d

]
m

0[
2]

[>
]

m
2[

0]
[<

]
m

1[
3]

[c
]

m
1[

2]
[a

]
m

1[
1]

[r
]

m
1[

0]
[d

]
m

0[
3]

[>
]

pattern(0)

"<card>"

pattern(1)

pattern(n)

.........

String Detectors

Figure 4.6: Diagram of a string detector

4.2.2 Parsing Structure

The parsing structure gives the content-based router a higher level of understanding than

simple pattern matching. It defines the semantics of patterns as they are detected by the

pattern matcher. The hardware logic for the parsing structure is determined from the

input grammar (or grammars). The production list of a grammar defines all of the possible

transitions for a grammar. While processing data, the parser maintains the state of the

grammar allowing it to determine which patterns can occur next.

As described in Section 3.2 the structure for the parser is determined using the

FIRST and FOLLOW set algorithms for predictive parsers. The FOLLOW sets for the

content-based router architecture are shown in Table 4.1. The corresponding parsing struc-

ture is illustrated in Figure 4.7.

The generated parsing structure processes packets one pattern at a time. At the start

of a packet, the starting register (register P0 in Figure 4.7) is set. As packets are processed,

the parsing structure receives a signal from the pattern matcher for each pattern that is

found. These signals allow the parsing structure to traverse through the grammar and

maintain the semantics of the data stream. During processing, all signals from the pattern

matcher are sent downstream to the routing module accompanied by the state of the parsing

41

FOLLOW SetPattern

</card></phone>

<phone>, </card></title>

<last>1</first>1

<first>2</last>2

</first>1, </last>1, </first>2,
</last>2, </title>, </phone>

STRING

<title>, <phone>, </card></name>

</name></last>1, </first>2

STRING
<first>1, <last>1, <first>2,
<last>2, <title>, <phone>

<first>1, <last>1<name>

<name></routekey>

</routekey>first, last

first, last<routekey>

<routekey><card>

FOLLOW SetPattern

</card></phone>

<phone>, </card></title>

<last>1</first>1

<first>2</last>2

</first>1, </last>1, </first>2,
</last>2, </title>, </phone>

STRING

<title>, <phone>, </card></name>

</name></last>1, </first>2

STRING
<first>1, <last>1, <first>2,
<last>2, <title>, <phone>

<first>1, <last>1<name>

<name></routekey>

</routekey>first, last

first, last<routekey>

<routekey><card>

Table 4.1: FOLLOW sets for example grammar

structure. The state of the parsing structure indicates where in the grammar each pattern

is found. Knowing where in the grammar a pattern is found allows the routing module to

make more intelligent decisions regarding packets’ destinations. To better understand this,

consider that the parsing structure in Figure 4.7 is searching for several instances of STRING.

However, if the router is configured to route on a first name, only STRING values that occur

at register P7 or P16 should affect the action that the router takes. Other occurrences of

STRING, those at P10, P13, P20, and P23, should not affect the action taken by the content

based router. Without parsing the entire data stream and maintaining the context of where

each STRING value occurs, this behavior is not possible.

Validating XML Input

To avoid routing invalid or malformed XML messages, the content-based router validates

all XML messages prior to routing them. As shown in Figure 4.7, an XML valid signal

is asserted when the parsing structure successfully traverses through the entire grammar.

The XML valid signal is forwarded to the routing module which can subsequently take the

appropriate routing action on the XML message.

42

start
of packet

<card>

<routekey>

first last

</routekey>

<first>

STRING
P7

</first>

<last>

STRING

P6

P10

P9

P8

</last>
P11

Parsing Structure

P0

P1

P2 P3

P4

<name>
P5

<last>

STRING
P13

</last>

<first>

STRING

P12

P16

P15

P14

</first>
P17

</name>

<title>
P19

STRING

</title>

P18

P21

P20

<phone>

STRING
P23

</phone>

P22

P24

</card>

XML
valid

P25

1

1

1

1

1

1

2

2

2

2

2

2

Figure 4.7: Diagram of parsing structure

4.2.3 Routing Module

The routing module (Figure 4.8) is responsible for modifying the IP header of each packet to

route the packet to the appropriate destination. As packets enter the content-based router

they are buffered in the routing module until the packet has been completely processed.

Prior to routing any packet, the routing module verifies that the packet is the correct format.

Most importantly, this entails validating the XML message. XML messages that do not

strictly adhere to the grammar provided will not be rerouted by the module. Optionally,

the module can also check for specific IP address and port ranges prior to routing.

For the example implementation, packets are routed based on the first character

of either the first name or the last name specified in the XML message. The routekey

43

value specifies which name to use for routing. A series of control signals received from

the pattern matcher and the parsing module allow the routing module to route packets

accordingly. These control signals are described below and can be seen in Figure 4.8.

routefirst

firstSTRING

routelast

lastSTRING

Routing Module

IP valid
Port valid

XML valid reroute
packet

route character E

route data

D Q
8

Route Table

dest. IP

Packet Buffer

data
packets

32
output

controller

data
packets

Figure 4.8: Diagram of routing module

The value routefirst is enabled by the parsing structure when register P2 is set and

the pattern first is detected by the pattern matcher. This value indicates that the packet

should be routed according to the first name in the XML message. Similarly, the value

routelast is enabled when register P3 is set and the pattern last is detected. It indicates

that the packet should be routed according to the last name in the XML message. These

values stay enabled for the duration of the packet.

The firstSTRING value is enabled by the parsing structure when either register P7

or register P16 are set and a STRING pattern is detected by the pattern matcher. Similarly,

the lastSTRING value is enabled when either register P10 or P13 are set and a STRING pattern

is detected. The firstSTRING and lastSTRING values are only valid for a single clock cycle.

During this clock cycle, the first character of the STRING pattern (the route character) is

44

forwarded to the routing module and stored. This value is then used to address a routing

table which determines the next destination of the packet being processed.

Once a packet has been fully processed, the output controller reads the packet from

the packet buffer for output. If the packet contains a valid XML message (and optionally, IP

address and port ranges), then the IP header is rewritten with the new destination address

as it is output.

4.2.4 Implementation and Experimental Setup

The content-based router described in this section was fully implemented and tested on the

Xilinx Virtex XCV2000E FPGA on the FPX platform. The FPX was integrated into a

Global Velocity GVS-1000 chassis. A photograph of an FPX and the GVS-1000 chassis is

shown in Figure 4.9.

Figure 4.9: FPX and GVS-1000 chassis

The GVS-1000 has two bidirectional gigabit interfaces for passing traffic into the

FPX. To test the content-based router architecture, each of the gigabit interfaces on the

GVS-1000 was connected to a different host machine. One machine was used to generate

and send XML messages into the content-based router. The second machine was used as

a receiver for routed messages. Since only two machines were used for these experiments,

XML messages were routed to different ports on the receiving machine based on the message

45

content. Both Ethereal and a small counter application were used to verify that XML

messages arrived at the correct destination port on the receiving machine.

XML data messages were generated on the sending machine via the small test appli-

cation shown in Figure 4.10. The test application creates XML messages using the values

specified in the text fields and sends them as UDP packets into the content-based router.

Additionally, the test application can randomly generate and send a specified number of

XML messages into the content-based router. An example XML message is shown in Fig-

ure 4.11.

Figure 4.10: Test application interface

<card>
 <routekey>first</routekey>
 <name>
 <first>John</first>
 <last>Doe</last>
 </name>
 <title>Citizen</title>
 <phone>555-555-5555</phone>
</card>

Figure 4.11: XML packet contents

46

4.2.5 Area and Performance

For this application the maximum clock frequency is limited to 100 MHz by the layered pro-

tocol wrappers. At this speed the content-based router can achieve a maximum throughput

of 3.2 Gbps. Without the protocol wrappers, the core of the content-based router architec-

ture can achieve clock frequencies over 200 MHz. At this speed the content-based router

can route XML data messages at about 6.4 Gbps.

The content-based router requires 3751 slice flip-flops, approximately 9% of the

available flip-flop resources. The architecture requires 3058 4-input LUTs, approximately

7% of the available LUT resources.

The layered protocol wrappers alone require 2623 flip-flops and 2196 4-input LUTs.

This is approximately 6% and 5% of the available flip-flop and LUT resources respectively.

The core of the content-based router (without the protocol wrappers) requires ap-

proximately 1128 slice flip-flops and 862 4-input LUTs. This is approximately 2.9% and 2.2%

of the available flip-flop and LUT resources respectively. Such a small space requirement

for the core of the routing architecture means much larger and/or many more grammars

can fit onto the FPGA.

4.3 Semantic Network-Content Filter

In previous work [26, 47], a hardware-accelerated semantic processing system was devel-

oped for analyzing computer network traffic. This system uses latent semantic indexing

techniques to analyze and classify the topic of streaming documents at multi-gigabit per

second data rates [65].

In order to assist the system to efficiently process the data, an additional module

was developed that identifies language and character encoding used in network data. This

module, called HAIL (Hardware-Accelerated Identification of Languages), uses N-grams

discovered from training documents to determine the language and encoding of documents

that pass through the system. Experimental results with multilingual datasets showed the

accuracy of HAIL to be very high. In many cases, the identification accuracy exceeded

99% [40].

47

However, most Internet documents such as XML, HTML, and email contain a large

amount of markup and header data. This markup data can have a negative impact on the

language detection algorithms used by HAIL. To improve the accuracy of HAIL, and hence

the accuracy of the whole document classification system, there is a need to identify and

extract document content from the markup data.

The remainder of this section describes how the regular language parser described in

Chapter 3 was used to implement a high-speed filter capable of extracting text from email

messages as they traverse a network. The filter removes headers and attachments from email

messages, leaving only the message content to be processed by the language identification

algorithm and document classifier. By removing markup and header data, the filter can

improve the accuracy of language identification algorithms. The filter described in this

section can process documents at over 600 Mbps on the FPX platform.

4.3.1 Background

This section provides a brief background on the semantic classification system and the HAIL

module.

Semantic Classification System

As described in [26, 47, 65], a hardware-accelerated document classification system has been

developed that uses latent semantic indexing techniques to classify streaming documents.

The system is designed to ingest and classify large volumes of network data in real time.

Classification is accomplished through a series of mathematical transformation algorithms

as shown in Figure 4.12. Each step of the transformation is implemented in reconfigurable

hardware on a series of stackable FPX devices.

As data packets enter the system, they are first processed by the TCP processor.

The TCP processor reconstructs packets into consistent TCP flows. Each flow is augmented

with control signals that indicate where the IP header, the TCP header, and data segment

of each packet starts. Additionally, a flow identification number is assigned to each TCP

48

Decode Input TCP data streams and interpret content

Map input words to basewords that have
semantic meaning

Receive large volume of input content
over a network (Example: HTML documents)

Score documents against
known and emerging concepts

Count word frequencies in each document

Automatically Threshold, classify, and
cluster content into groups for analyst.

ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ............ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ............

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Decode Input TCP data streams and interpret content

Map input words to basewords that have
semantic meaning

Receive large volume of input content
over a network (Example: HTML documents)

Score documents against
known and emerging concepts

Count word frequencies in each document

Automatically Threshold, classify, and
cluster content into groups for analyst.

ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ............ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ............

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Figure 4.12: Flow of documents through the document classification system

flow so downstream components can manage per-flow context. Each TCP flow is considered

to be a single document.

Reconstructed TCP flows are subsequently processed by a word mapping circuit.

The word mapping circuit tokenizes each TCP flow to find words in the flow. For each

word that is found, a hash is computed that is used as an address into a word mapping

table (WMT). The WMT is a 1 million entry table that maps 1 million input words down

to 4000 basewords. A baseword is a numerical representation of the semantic meaning of the

input word. For example, the input words “sleep”, “sleeping”, “nap”, and “siesta” all have

similar semantics. As such, the WMT would map all of these words to the same baseword

value. For details on the different techniques used to create the WMT, refer to [26].

Once a flow has been tokenized, the list of basewords is sent downstream to a module

that maintains a count of the basewords for each active flow. The count is maintained in

49

a 4000-dimension document vector, where each dimension represents one of the possible

baseword outputs of the WMT.

At the conclusion of each flow, the 4000-dimension document vector is sent to the

scoring module. The scoring module computes a dot product of the document vector against

up to 30 previously defined 4000-dimension concept vectors. The flow is subsequently

classified according to the highest scoring concept.

Language Identification Hardware

In an effort to further enhance the capabilities of the semantic document classification

system, the HAIL module was developed. This module integrates into the document classi-

fication system and identifies the language and character encoding of each TCP flow prior

to classification [40, 39].

Identifying the language and character encoding allows the semantic classification

system to employ encoding specific tokenizers as well as language specific WMTs. Using an

encoding specific tokenizer allows the system to reduce noise by only accepting characters

known to be a member of a given character set in a given language. Language specific

WMTs allow the system to differentiate between words that occur in multiple languages

but have different meanings in each language. Separating WMTs by language also has the

benefit of breaking one large WMT into many smaller WMTs, thereby reducing the number

of entries in each table. Fewer table entries can help to alleviate any hash collisions that

may occur during the baseword translation.

HAIL utilizes N-grams to identify both the language and character encoding of a data

stream. An N-gram consists of N sequential characters that have been extracted from the

data stream. As HAIL processes a data stream, a series of five sequential characters (tetra-

grams) are extracted to represent the document. Each unique tetra-gram is associated with

a single language/encoding pair through offline training. As tetra-grams are extracted from

a document, a counter for the associated language/encoding pair is incremented. At the

end of a document, HAIL identifies the language and encoding based on the counter with

the highest value.

50

4.3.2 Application Level Processing System

When properly trained, HAIL can accurately identify the language of a streaming document

up to 99.95% of the time. However, this result assumes that HAIL is processing clean

documents composed of mostly (if not entirely) text in a single language. This is not likely

to be the case when processing many types of Internet traffic. For example, both HTML

and email documents contain headers and tags that are likely to be identified as English

whereas the body of the document may actually be Spanish, German, or Arabic. Given a

document with enough header information, HAIL may incorrectly identify the language of

the document due to the N-grams found in the header.

Consider the sample email shown in Figure 4.13. The email header consists of over

1500 bytes of data, whereas the email body consists of only 65 bytes of data. It is desirable

that HAIL identify the language found in the email body and not in the email header.

Additionally, it is desirable that only the body of the email message is processed by the

document classification system. If the email is processed by both HAIL and the document

classification system with the headers intact, it is unlikely that either HAIL or the document

classification system will exhibit the desired behavior.

To alleviate the problems described above, an additional module, the Application

Level Processing System (ALPS), was built using the fast regular language parser. ALPS

has been implemented on the FPX platform to serve as a preprocessor to the HAIL module.

The ALPS circuits can be automatically generated via a custom compiler when provided

with a grammar in a Lex/Yacc style format. Additionally, ALPS allows specific fields of a

grammar to be either forwarded or removed based on a users preference. Referring back to

the sample email in Figure 4.13, ALPS can be configured to identify and parse the entire

email message and forward only the email body downstream to HAIL and the document

classification system. This will allow HAIL to more accurately identify the language and

allow more accurate classification by the document classification system.

51

Return-Path: <sender@smtp.server.com>
X-Original-To: sender@smtp.server.com
Delivered-To: receiver@smtp.server.com
Received: from Lappy (24-107-16-209.dhcp.stls.mo.cha rter.com [24.107.16.209])

by smtp.server.com (Postfix) with ESMTP id BA74636BF 2
for <receiver@smtp.server.com>; Fri, 27 Oct 2006 03 :35:29 -0500 (CDT)

Message-ID: <039801c6f9a2$c06f36d0$eaa0fc80@Lappy>
From: “Sender" <sender@smtp.server.com>
To: “Receiver" <receiver@smtp.server.com>
Subject: Example Email
Date: Fri, 27 Oct 2006 03:34:42 -0500
MIME-Version: 1.0
Content-Type: multipart/alternative;

boundary="----=_NextPart_000_0395_01C6F978.D7451B60 "
X-Priority: 3
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 6.00.2900.2869
X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900. 2962
X-Virus-Status: No
X-Virus-Checker-Version: clamassassin 1.2.3 with cla mdscan /

ClamAV 0.88.2/2105/Thu Oct 26 03:14:55 2006
X-Spam-Checker-Version: SpamAssassin 3.0.5 (2005-11- 28) on smtp.server.com
X-Spam-Level:
X-Spam-Status: No, score=-0.3 required=6.0 tests=AW L,BAYES_00,HTML_80_90,

HTML_MESSAGE,RCVD_IN_NJABL_DUL,RCVD_IN_SORBS_DUL autolearn=no
version=3.0.5

Status: O
X-UID: 39213
Content-Length: 1082
X-Keywords:

This is a multi-part message in MIME format.

------=_NextPart_000_0395_01C6F978.D7451B60
Content-Type: text/plain;

charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

Hola mama. La universidad es grande. Enviar por favor el dinero.

------=_NextPart_000_0395_01C6F978.D7451B60--

Email Headers

Email Body

Email Footer

Return-Path: <sender@smtp.server.com>
X-Original-To: sender@smtp.server.com
Delivered-To: receiver@smtp.server.com
Received: from Lappy (24-107-16-209.dhcp.stls.mo.cha rter.com [24.107.16.209])

by smtp.server.com (Postfix) with ESMTP id BA74636BF 2
for <receiver@smtp.server.com>; Fri, 27 Oct 2006 03 :35:29 -0500 (CDT)

Message-ID: <039801c6f9a2$c06f36d0$eaa0fc80@Lappy>
From: “Sender" <sender@smtp.server.com>
To: “Receiver" <receiver@smtp.server.com>
Subject: Example Email
Date: Fri, 27 Oct 2006 03:34:42 -0500
MIME-Version: 1.0
Content-Type: multipart/alternative;

boundary="----=_NextPart_000_0395_01C6F978.D7451B60 "
X-Priority: 3
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 6.00.2900.2869
X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900. 2962
X-Virus-Status: No
X-Virus-Checker-Version: clamassassin 1.2.3 with cla mdscan /

ClamAV 0.88.2/2105/Thu Oct 26 03:14:55 2006
X-Spam-Checker-Version: SpamAssassin 3.0.5 (2005-11- 28) on smtp.server.com
X-Spam-Level:
X-Spam-Status: No, score=-0.3 required=6.0 tests=AW L,BAYES_00,HTML_80_90,

HTML_MESSAGE,RCVD_IN_NJABL_DUL,RCVD_IN_SORBS_DUL autolearn=no
version=3.0.5

Status: O
X-UID: 39213
Content-Length: 1082
X-Keywords:

This is a multi-part message in MIME format.

------=_NextPart_000_0395_01C6F978.D7451B60
Content-Type: text/plain;

charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

Hola mama. La universidad es grande. Enviar por favor el dinero.

------=_NextPart_000_0395_01C6F978.D7451B60--

Email Headers

Email Body

Email Footer

Figure 4.13: Sample email message

4.3.3 Implementation of Email Parser

Implementing an email parser using ALPS first required defining a grammar for email. For

this, the standard email grammar as defined in RFC 2822 [57] was utilized. Additionally,

grammars defined in RFC 2045 [29] and RFC 2046 [30] were incorporated to properly parse

both MIME header extensions and multipart email messages. A small excerpt representing

the date portion from RFC 2822 is shown in Augmented Backus Naur Form (ABNF) in

Figure 4.14. Figure 4.15 shows the same portion of the grammar after it has been converted

52

date-time = [day-of-week ","] date FWS time [CFWS]day-of-week = [FWS] day-nameday-name = "Mon" / "Tue" / "Wed" / "Thu" / "Fri" / "Sat" / "Sun"date = day month yearyear = 4*DIGITmonth = FWS month-name FWSmonth-name = "Jan" / "Feb" / "Mar" / "Apr" / "May" / "Jun" / "Jul" / "Aug" / "Sep" / "Oct" / "Nov" / "Dec"day = [FWS] 1*2DIGITtime = time-of-day FWS zonetime-of-day = hour ":" minute [":" second]minute = 2DIGITsecond = 2DIGIThour = 2DIGITzone = ("+" / "-") 4DIGIT
Figure 4.14: ABNF for date portion of email grammardate-time: date-time-opt date FWS time CFWS-opt;date-time-opt: day-of-week "," | ;day-of-week: FWS-opt day-name;day-name: "Mon" | "Tue" | "Wed" | "Thu" | "Fri" | "Sat" | "Sun";date: day month year;year: DIGIT DIGIT DIGIT DIGIT year-opt;year-opt: DIGIT year-opt | ;month: FWS month-name FWS;month-name: "Jan" | "Feb" | "Mar" | "Apr" | "May" | "Jun“ |"Jul" | "Aug" | "Sep" | "Oct" | "Nov" | "Dec";day: FWS-opt DIGIT day-2dig;day-2dig: DIGIT | ;time: time-of-day FWS zone;time-of-day: hour ":" minute time-of-day-opt;time-of-day-opt: ":" second | ;minute: DIGIT DIGIT;second: DIGIT DIGIT;hour: DIGIT DIGIT;zone: zone-a zone-b;zone-a: "+" | "-";Zone-b: DIGIT DIGIT DIGIT DIGIT;
Figure 4.15: BNF for date portion of email grammar

from ABNF to the format accepted by the ALPS hardware generator. The complete gram-

mar for the email parser consists of over 160 tokens and 200 production rules. Appendix A

contains the complete Lex/Yacc style grammar used to generate the hardware.

As shown in Figure 4.16, the email parser consists of several main components: the

lexical analyzer, the parsing structure, and the filtering module. Both the lexical analyzer

and the parsing structure are automatically generated from the grammar tokens and the

grammar production rules respectively. The filtering module receives information from the

parsing structure and can be configured to either keep or discard data given the state of

53

the parser. The following sections discuss the architecture and generation of the lexical

analyzer and the parsing structure.

Lexical
Analyzer

...

Grammar

Parsing
Structure

data
packets

...

Tokens

Filtering
Module

filtered data
packets

Figure 4.16: ALPS email parser architecture

Lexical Analyzer

As data enters the email parser it is first processed by the lexical analyzer. The lexical

analyzer is a pattern matcher that scans the input data for strings that match tokens in the

input grammar. The pattern matcher architecture uses an 8-bit pipelined character grid as

described by Baker [8]. A detailed block diagram of the decoded character pipeline is shown

in Figure 4.17. The top half of the figure shows the decoded character pipeline, whereas

the bottom half shows a sample string detector required to match the From: token in the

email grammar. The string detectors required for each of the tokens in the grammar are

automatically generated by custom tools.

The pipeline receives one character per clock cycle from the input data stream.

Before entering the pipeline registers, characters are passed into a decoder which outputs

a single bit line for each of the characters needed by the string detectors. This decreases

the hardware routing resources required for matching the tokens in the grammar. The

decoded character lines are passed into the pipeline registers as illustrated in Figure 4.17.

Additionally, the decoder is generated along with the string detectors and contains only

54

m
3

m
4

..
.

a

b

c

m
1

m
2

256-bit decoded registers

m
0

8-bit

 to

 256-bit

decoder

..
.

..
.

..
.

..
.data

m4[F]

m3[r]

m2[o]

pattern(0)

"From:"

m1[m]

m0[:]

unused

unused ..
.

pattern(n)

patterns[n:0]unused

Figure 4.17: Pattern matcher for lexical analysis

the logic required to decode the characters needed by those string detectors (up to 256

characters).

The actual pattern matching is executed by a series of string detectors which are

automatically generated. A match is found by ANDing together the appropriate bits from

the decoded character pipeline as characters traverse through the pipeline. A single bit line

is output from the lexical analyzer to the parsing structure for each of the string detectors.

These signals indicate to the parser when a match is found.

Parsing Stucture

The parsing structure gives the email parser the ability to understand input data stream

at the application level. It defines the semantics of tokens as they are detected by the

lexical analyzer and maintains the contextual state of the data stream. The hardware logic

required for the parsing structure is determined from the input grammar using the FIRST

and FOLLOW set algorithms as described in Chapter 3. The production list of the email

grammar defines all of the possible tokens and transitions for the grammar.

55

4.3.4 Data Sets and Results

To test the effectiveness of the ALPS email parsing circuit, five different data sets were

created. Each data set consisted of 10,816 email messages in 14 different languages. The

email headers for each of the emails in all five data sets were similar in both size and

content to the email header shown in Figure 4.13. The size of the email body was different

for the five different data sets, with the smallest email body being 75 bytes and the largest

being 1200 bytes. The source text for the email bodies was the same for all five data sets.

Therefore, the first 75 bytes of all 1200 byte emails is identical to the first 75 bytes of the

corresponding email in the 75 byte data set (and all other data sets). Table 4.3 shows the

email body sizes for all five different data sets.

Each of the five data sets was first created as 10,816 text files that consisted of the

email headers and body. A tool was built to convert these text files into 10,816 TCP flows

that could be replayed into the FPX hardware for live testing.

The results for processing the 300 byte emails are shown in Table 4.2. The Lang

ID column is a unique number that HAIL uses to represent each language. The Language

column shows the 14 different languages that were part of the experimental data set. The

TRUTH column represents the number of documents in the data set that were actually the

given language. The HAIL column represents the number of documents HAIL reported as

Lang ID Language TRUTH HAIL # Correct # Incorrect ALPS+HAIL # Correct # Incorrect
1 Albanian 1 0 0 0 6 1 5
2 Arabic_trans 1447 390 390 0 1448 1447 1
4 Czech 29 1 1 0 77 21 56
5 English 2691 0 0 0 2535 2321 214
6 Estonian 1 10280 1 10279 28 1 27
7 French 916 0 0 0 875 835 40
8 German 700 0 0 0 604 585 19
13 Italian 789 0 0 0 960 739 221
20 Norwegian 43 144 39 105 75 40 35
24 Portuguese 1634 0 0 0 1146 1103 43
28 Spanish 2514 0 0 0 2346 2130 216
29 Swedish 20 0 0 0 1 0 1
32 Turkish 20 0 0 0 4 3 1
34 Uzbek 11 0 0 0 3 3 0

TOTALS 10816 10815 431 10384 10108 9229 879
% Correct 3.98% 85.33%

Table 4.2: Language identification results for the 300-byte data set

56

the given language when operating alone. The ALPS+HAIL column represents the number

of documents HAIL reported as the given language when each flow was preprocessed using

the ALPS email parser. Note that the total number of documents in the HAIL and the

ALPS+HAIL columns are not the same as the total number of documents in the TRUTH

column. This is the result of some documents being reported as a language that was not

represented in the data set (i.e. some documents may have been reported with a language

ID of 35 which is not shown in the table).

The data in Table 4.2 indicates that the email headers used in the data set have a

strong negative affect on the language identification results for the 300 byte emails. From

the results, it appears that the email headers have a significant number of Estonian tetra-

grams. When using HAIL alone, 10,280 out of 10,816 documents are identified as Estonian;

only one of those documents is actually Estonian. This is because the email headers in

the data set are 1500 bytes, whereas the email body is only 300 bytes. This means HAIL

extracted five times more tetra-grams from the email headers than it extracted from the

email body. This large disparity gave the email headers a greater significance than the email

body when counting the number of tetra-grams to identify the language.

Overall, for the 300 byte data set, it is shown that HAIL alone only correctly iden-

tified the language of 3.98% (431 out of 10,816) of the documents, whereas ALPS+HAIL

correctly identified the language of 85.33% (9,229 out of 10,816) of the documents.

The percentage of correctly identified documents for all five of the data sets is shown

in Table 4.3. The same data is represented graphically in Figure 4.18. The data for HAIL

alone has the expected behavior. When the size of the email header is significantly larger

than the email body, the output of HAIL alone is skewed towards the language identified

% Correct % Correct
Body Size # Correct HAIL Alone # Correct ALPS+HAIL
75-bytes 24 0.22% 5006 46.28%
150-bytes 38 0.35% 7532 69.64%
300-bytes 431 3.98% 9229 85.33%
600-bytes 4925 45.53% 9699 89.67%

1200-bytes 7290 67.40% 9837 90.95%

Table 4.3: Percentage of correctly classified documents for HAIL alone and ALPS+HAIL

57

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

75-bytes 150-bytes 300-bytes 600-bytes 1200-bytes

Size of Email Message Body

P
er

ce
n

t
o

f
D

o
cu

m
en

ts
 C

la
ss

if
ie

d
 C

o
rr

ec
tl

y

HAIL Alone ALPS+HAIL

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

75-bytes 150-bytes 300-bytes 600-bytes 1200-bytes

Size of Email Message Body

P
er

ce
n

t
o

f
D

o
cu

m
en

ts
 C

la
ss

if
ie

d
 C

o
rr

ec
tl

y

HAIL Alone ALPS+HAIL

Figure 4.18: Percentage of documents correctly classified by HAIL for each data set

in the email header. However, as the size of the email body increases and becomes a larger

percentage of the complete email message, the results of HAIL alone become more accurate.

As illustrated by the trend in Figure 4.18, if the email body is large enough in comparison

to the email header, it will counterbalance the affects of the email header.

The data for ALPS+HAIL in Figure 4.18 illustrates that the accuracy of HAIL

increases as the size of a clean document increases. HAIL is more likely to correctly identify

the language of a larger documents due to the larger number of available tetra-grams.

Table 4.4 and Figure 4.19 show the percent increase in accuracy that is achieved when

using ALPS+HAIL as opposed to HAIL alone. For large emails where the size of the email

body is close to the size of the email headers using ALPS provides a 34.94% improvement

Data Set % Increase
75-bytes 20758.33%
150-bytes 19721.05%
300-bytes 2041.30%
600-bytes 96.93%

1200-bytes 34.94%

Table 4.4: Increase in accuracy when using ALPS+HAIL as opposed to HAIL alone

58

on the experimental data set. For smaller emails, using ALPS as a preprocessor to HAIL

provides over 200× improvement.

0%

5,000%

10,000%

15,000%

20,000%

75-bytes 150-bytes 300-bytes 600-bytes 1200-bytes

Size of Email Message Body

P
er

ce
n

t
In

cr
ea

se

0%

5,000%

10,000%

15,000%

20,000%

75-bytes 150-bytes 300-bytes 600-bytes 1200-bytes

Size of Email Message Body

P
er

ce
n

t
In

cr
ea

se

Figure 4.19: Increase in accuracy when using ALPS+HAIL

4.4 Chapter Summary

This chapter described two example applications of the regular language parser from Chap-

ter 3. The first application was a content-based router that routes packets based on the

string values extracted from the packet. The content-based router was generated from an

XML grammar and is capable of presenting specified values embedded in the XML message

to a routing module. The extracted value can be used to route packets accordingly.

The second example application was an email processor. The email processor was

automatically generated from the email specification. The utility of the email processor

was illustrated through its use as a preprocessor for a language identification module. The

email processor was used to remove email headers from email messages and present clean

text to the language identification module. Using the email processor improved the results

of the language identification module by approximately 35% for large email messages. A

200× improvement was seen for small email messages.

59

Part II

Hardware Architectures for

Accelerating RNA

Secondary Structure Alignment

60

Chapter 5

RNA Secondary Structure

Alignment

The hardware-accelerated parsing techniques described in Part I have been developed for

streaming networking applications. However, there are other areas that can also benefit

from the ability to parse large volumes of data at very high speeds. Specifically, the area

of bioinformatics utilizes common parsing algorithms to compare DNA, RNA, and protein

sequences. Part II of this work focuses on a high-speed hardware architectures designed to

parse large genome databases in an effort to find homologous RNA molecules.

5.1 Introduction

In the field of bioinformatics, sequence alignment plays a major role in classifying and

determining relationships among related DNA, RNA, and protein sequences. Sequence

alignment is very well studied in the areas of DNA and protein analysis, and many tools

have been developed to aid research in these areas [2, 55, 35]. However, only recently has

the importance of non-coding RNAs (ncRNAs) been discovered [69].

An ncRNA is an RNA molecule that is not translated into a protein, but instead

performs some other cellular process. Examples of ncRNA molecules include transfer RNAs

(tRNAs) and ribosomal RNAs (rRNAs). These molecules are typically single-stranded

61

nucleic acid chains that fold upon themselves to create intramolecular base-paired hydrogen

bonds [23]. The result of these bonds is a complex three-dimensional configuration (shape)

that partially defines the function of an RNA molecule. This configuration is known as the

secondary structure of the RNA molecule. Two molecules are said to be homologous if they

have similar to identical secondary structures.

Homologous RNA molecules are likely to have similar biological functions, even

though they may have dissimilar primary sequences. For example, the primary sequence

AAGACUUCGGAUC creates the secondary structure shown in the left portion of Figure 5.1(b). A

homologous molecule with a highly dissimilar primary sequence could result from exchanging

the sequence’s G and C nucleotides, or by substituting U for C and A for G.

The DNA sequences from which ncRNA molecules are transcribed are known as

RNA genes. However, unlike protein-coding genes, RNA genes cannot be easily detected in

a genome using statistical signals [58]. Moreover, because related RNA genes tend to exhibit

poor primary sequence conservation, techniques developed for comparing DNA sequences

are ill-suited for detecting homologous RNA sequences [23]. Instead, techniques have been

developed that utilize the consensus secondary structure of a known RNA family to detect

new members of that family in a genome database [25]. To date, these techniques have

proven to be very computationally complex and can be quite demanding even for the fastest

computers [24].

The consensus secondary structure of an RNA family can be represented as a stochas-

tic context-free grammar (SCFG) that yields high-probability parses for, and only for, the

primary sequences of molecules belonging to the family [64]. Several tools have been devel-

oped that employ SCFGs as a means of detecting homologous RNA molecules in a genome

database. At the forefront of these tools is the Infernal software package [37] and the

Rfam database [33] which currently includes SCFGs for over 600 RNA families.

Infernal has shown great success in its ability to detect homologous RNA sequences

in genome databases. Additionally, since it was first released in 2002, Infernal has been

frequently updated and extended to incorporate different heuristics to decrease the com-

putational costs of finding homologous RNA sequences [74, 53]. However, even with these

62

improvements, the time to scan a large genome database can still take many hours, days,

or even years, which greatly limits the usefulness of tools such as Infernal.

This work examines architectures for finding RNA homologs using custom hard-

ware. The remainder of this chapter presents related work and a brief background on the

techniques used to model RNA secondary structures and the algorithms used for finding

homologous sequences in a genome database. Chapter 6 presents a highly-pipelined initial

architecture that is capable of scanning genome databases at very high speeds. Although

extremely fast, the resource requirements for the baseline architecture prohibit the architec-

ture from practical use for even average size RNA models. In Chapter 7, a more practical

architecture for scanning genome databases is presented that involves scheduling computa-

tions onto a set of parallel processing elements.

5.2 Related Work

While heuristics [13, 44, 48, 73, 74, 53] can dramatically accelerate the computationally com-

plex process of detecting homologous RNA sequences in genome databases, the completeness

and quality of the results are often sacrificed. For example, some heuristics pre-filter se-

quences based on their primary sequence similarity, applying the more complex secondary

structure alignment algorithms only on the sequences that pass the filter [73, 74]. However,

because these filters are based on the consensus primary sequence of an RNA family, they

do not work well on families that have limited primary sequence conservation [53]. Fur-

thermore, as an RNA family grows, and more variation is introduced into the consensus

primary sequence, these filtering techniques may become ineffective.

Concurrency can also be exploited to improve performance. Liu and Schmidt [45]

utilized coarse-grained parallelism and a PC cluster to achieve a 36× speedup. While not

directly related RNA secondary structure alignment, Aluru [3] and Schmidt [62] present

approaches for taking advantage of finer grained parallelism in primary sequence compar-

isons.

63

5.3 Background

Transformational grammars were first described as a means for modeling sequences of nucleic

acids by Searls [64]. Grammars provide an efficient means of modeling the long range base-

pair interactions of RNA secondary structures. More specifically, stochastic context-free

grammars (SCFGs) provide the framework required to represent probabilistic models of

both the primary sequence and the base-paired secondary structure of an RNA molecule.

Given a multiple sequence alignment of an RNA family, one can construct a profile-SCFG,

also referred to as a covariance model (CM), that can subsequently be used to detect

homologs in a genome database [25]. The remainder of this section provides background on

CMs and how they are used for scanning genome databases.

5.3.1 Covariance Models

A covariance model (CM) is a specialized SCFG developed specifically for modeling both

the primary sequence and secondary structure of RNA families. Figure 5.1 shows the de-

velopment of a CM as follows. In Figure 5.1(a), three RNA sequences are aligned, with

connected boxes showing the consensus base pairs that bind to form the secondary struc-

ture; the top sequence’s secondary structure is called out in Figure 5.1(b). The consensus

secondary structure of all three sequences is represented by the directed binary tree in

Figure 5.1(c), whose nodes indicate the binding pattern of the sequences’ nucleotides.

While the three sequences of Figure 5.1(a) fit identically onto the binary tree, other

sequences may fit the model only if appropriate insertions and deletions are applied. Such

edits are accommodated by state transitions within a node. For three nodes of the bi-

nary tree in Figure 5.1(c), Figure 5.1(d) shows those nodes’ internal states and possible

transitions.

For the purposes of assessing the fitness of an RNA string for membership in an

RNA family, the RNA string is parsed using grammar rules that model state transitions

such as those in Figure 5.1(d). Each state can be represented as a SCFG production rule

that has the form of one of the nine non-terminal (or state) types shown in Table 5.1. Each

state has its own set of emission probabilities for each of the single or base-paired residues

64

MP51

c ua a u c g g a u c a au c g a c a c a g u g

c u u c g g c a a ua g g u c a c g g g c c u c

ca g ua a u c g g a u c u g cg g a c a c c c

(a)

c

a
g

u

a

a

u c
g

g
a

u

c
u

g
c

g
a

c

a
c

c

g c

(b)

MATL18

D64ML63

IL65

MATP17

MP57 D60MR59ML58

IL61 IR62

MATP16

D54MR53ML52

IL55 IR56

(d)

MATP5

MATL1

ROOT0

END13

MATL2

BIF3

BEGL4 BEGR14

MATP6

MATR7

MATP8

MATL9

MATL10

MATL11

MATL12

MATL15

MATP16

MATP17

MATL18

MATP19

END23

MATL20

MATL21

MATL22

(c)

1 5 10 15 20 24

1

5
10

15

20

24

1

5

2

3

4

6

7

8

9

10

11

12

13 14

15

16

17

18

19

20

21

22

23

24

MP51MP51

c ua a u c g g a u c a au c g a c a c a g u g

c u u c g g c a a ua g g u c a c g g g c c u c

ca g ua a u c g g a u c u g cg g a c a c c c

(a)

c

a
g

u

a

a

u c
g

g
a

u

c
u

g
c

g
a

c

a
c

c

g c

(b)

MATL18

D64ML63

IL65

MATP17

MP57 D60MR59ML58

IL61 IR62

MATP16

D54MR53MR53ML52

IL55 IR56

(d)

MATP5

MATL1

ROOT0

END13

MATL2

BIF3

BEGL4 BEGR14

MATP6

MATR7

MATP8

MATL9

MATL10

MATL11

MATL12

MATL15

MATP16

MATP17

MATL18

MATP19

END23

MATL20

MATL21

MATL22

(c)

1 5 10 15 20 24

1

5
10

15

20

24

1

5

2

3

4

6

7

8

9

10

11

12

13 14

15

16

17

18

19

20

21

22

23

24

Figure 5.1: A reproduction of an example CM from [23, 53]

State Type Description Production Emission Transition
MP Pair Emitting P → xiY xj ev(xi, xj) tv(Y)

ML / IL Left Emitting L→ xiY ev(xi) tv(Y)
MR / IR Right Emitting R→ Y xj ev(xj) tv(Y)

B Bifurcation B → SS 1 1
D Delete D → Y 1 tv(Y)
S Start S → Y 1 tv(Y)
E End E → ε 1 1

Table 5.1: Each of the nine different state types and their corresponding SCFG
production rules

that can be emitted from that state. Additionally, each state has its own set of transition

probabilities for the set of states to which it can transition.

A state that is denoted as anMP state generates (or emits) the base-pair (xi,xj) with

some emission probability ev(xi, xj) and transitions to some state Y with some transition

probability tv(Y). Likewise, a state that is an ML (or IL) state generates (or emits) the

single residue xi with some emission probability ev(xi) and transitions to some state Y with

some transition probability tv(Y). The B type bifurcation states represent a fork in the tree

structure of the CM and always transition to two distinct S type states without emitting

65

any residues. S states are also members of the ROOT node of the CM. A D type state

is used to represent a residue that is part of the CM, but missing from the target genome

sequence. Leaf nodes of the CM are represented as E states and do not emit any residues.

For a more detailed discussion on CMs, refer to [23, 25].

5.3.2 Rfam Database

An online database, known as the Rfam database [33], currently contains multiple sequence

alignments and CMs for over 600 RNA families. Rfam is an open database that is avail-

able for all researchers interested in studying algorithms and architectures related to RNA

homology search. Since its inception, the Rfam database has seen continuous growth as

more ncRNA families are identified. Figure 5.2 depicts the growth of the Rfam database

over the last five years. Estimates suggest that there are several tens of thousands of ncR-

NAs in the human genome [49, 71]. The vast number of ncRNAs suggests the need for a

high-performance alternative to software approaches for homology search.

0

100

200

300

400

500

600

700

800

Ju
n-

20
02

D
ec

-2
00

2

Ju
n-

20
03

D
ec

-2
00

3

Ju
n-

20
04

D
ec

-2
00

4

Ju
n-

20
05

D
ec

-2
00

5

Ju
n-

20
06

D
ec

-2
00

6

Ju
n-

20
07

D
ec

-2
00

7

N
u

m
b

er
 o

f
C

M
s

in
 R

fa
m

D
B

0

100

200

300

400

500

600

700

800

Ju
n-

20
02

D
ec

-2
00

2

Ju
n-

20
03

D
ec

-2
00

3

Ju
n-

20
04

D
ec

-2
00

4

Ju
n-

20
05

D
ec

-2
00

5

Ju
n-

20
06

D
ec

-2
00

6

Ju
n-

20
07

D
ec

-2
00

7

N
u

m
b

er
 o

f
C

M
s

in
 R

fa
m

D
B

Figure 5.2: The number of covariance models in the Rfam database has continued to
increase since its initial release in July of 2002.

66

5.3.3 Database Search Algorithm

CMs provide a means to represent the consensus secondary structure of an RNA family.

This section describes how to utilize a CM to find homologous RNA sequences in a genome

database.

Aligning an RNA sequence to a CM can be implemented as a three-dimensional

CYK (Cocke-Younger-Kasami) [21, 75, 38] dynamic programming (DP) parsing algorithm.

Each state in the CM is represented as a two-dimensional matrix with rows 0 through L

where L is the length of the genome database, and columns 0 through W where W is the

length of the window (i.e. the longest subsequence of the genome database) which should

be aligned to the CM. Figure 5.3 shows an example of the alignment window as it scans

across a genome database.

Genome
Database

L = 25
: A.C.U.G.U.A.G.C.U.G.C.U.G.A.C.U.G.A.U.G.C.U.A.G.C

Alignment
Window
W = 5

Figure 5.3: An alignment window scans across the genome database. Each window is
aligned to the CM via the DP parsing algorithm.

The DP algorithm initializes the three-dimensional matrix for all parse trees rooted

at E states of the CM and for all subsequences of zero length. The algorithm then computes

the scores for the DP matrix starting from the END nodes of the CM and working towards

the ROOT0 node. Figure 5.4 shows the DP recurrences for aligning a genome database

sequence x1...xL to a CM where:1

– x1...xL is a sequence of residues (A, C, G, U)

– xi...xj is a subsequence of x1...xL where 1 ≤ i, j ≤ L and i ≤ j

– i is the start position of the subsequence xi...xj

– j is the end position of the subsequence xi...xj
1Figure 5.4 shows the equations used in version 0.81 of the Infernal software package. However, it

should be noted that as of Infernal version 0.4 the emission probabilities for all insert states are set to 0
in lieu of the values stored in the CM.

67

– d is the length of the subsequence xi...xj where 1 ≤ d ≤W and i = j − d+ 1

– γv(j, d) is the log-odds score for the most likely parse tree rooted at state v that

generates the subsequence that ends at location j of the genome sequence and has

length d (i.e. the subsequence xj−d+1...xj)

– M is the number of states in the CM

– v indexes a state from the CM where 0 ≤ v < M

– sv identifies the state type of v (i.e. MP , ML, etc.)

– Cv is the set of states to which state v can transition

– tv(y) is the log-odds probability that state v transitions to the state y

– ev(xi) is the log-odds probability that state v generates (or emits) the residue xi

– ev(xj) is the log-odds probability that state v generates (or emits) the residue xj

– ev(xi, xj) is the log-odds probability that state v generates (or emits) the residues xi

and xj

Initialization: for j = 0 to L, v = M − 1 to 0 :

γv(j, 0) =


0 if sv = E
maxy∈Cv [γy(j, 0) + tv(y)] if sv ∈ {D,S}
γy(j, 0) + γz(j, 0) if sv = B,Cv = (y, z)
−∞ otherwise

Recursion: for j = 1 to L, d = 1 to W (and d ≤ j), v = M − 1 to 0 :

γv(j, d) =



−∞ if sv = E
−∞ if sv = MP and d < 2
max0≤k≤d[γy(j − k, d− k) + γz(j, k)] if sv = B,Cv = (y, z)
maxy∈Cv [γy(j, d) + tv(y)] if sv ∈ {S,D}
maxy∈Cv [γy(j, d− 1) + tv(y)] + ev(xi) if sv ∈ {ML, IL}
maxy∈Cv [γy(j − 1, d− 1) + tv(y)] + ev(xj) if sv ∈ {MR, IR}
maxy∈Cv [γy(j − 1, d− 2) + tv(y)] + ev(xi, xj) if sv = MP and d ≥ 2

Figure 5.4: The initialization and recursion equations for the dynamic programming
algorithm

The DP algorithm scores all subsequence of length 0 through W rooted at each of

the CM states M − 1 down to 0. The final score for a subsequence xi...xj is computed in

the start state of the ROOT0 node as γ0(j, j − i+ 1) (i.e. γ0(j, d)). For example, the final

68

score for the subsequence x10...x15 would be located in γ0(15, 6). Generally, subsequences

with final scores that are greater than zero represent good alignments to the CM. The DP

algorithm has a O(MaLW + MbLW
2) time complexity and a O(MaW + MbW

2) memory

complexity where Ma is the number of non-bifurcation states and Mb is the number of

bifurcation states [23].

5.4 Expressing Covariance Models as Task Graphs

To aid in the development of architectures for accelerating the computations described in

Section 5.3.3, it is helpful to think of the three-dimensional DP matrix required by the

computation as a directed acyclic task graph. With the exception of matrix cells that are a

part of bifurcation states, each cell (v, j, d) in the DP matrix can be represented as a single

node in a task graph. Nodes are connected using the parent/child relationships that are

described in CM, as well as the DP algorithm shown in Figure 5.4. The CM specifies the

parent/child relationships between the states v. The DP algorithm specifies the parent/child

relationships for cells (j, d) within those states. To connect nodes in the task graph, edges

are created from a child node to a parent node (i.e. from nodes in higher numbered states

to nodes in lower numbered states). This corresponds to the direction of the computation

which starts at state v = M − 1 and ends at state v = 0. For nodes from non-bifurcation

states, the maximum number of incoming edges is six. As can be seen in Figure 5.1(d), the

structure of CMs limits the maximum number of children that a state may have to six. The

minimum number of incoming edges is one.

5.4.1 Bifurcation States

As mentioned in the previous section, matrix cells from bifurcation states are not represented

as a single node in a task graph representation of the DP computation. As the equations

in Figure 5.4 show, cells for bifurcation states are treated differently than cells for non-

bifurcation states. Unlike non-bifurcation states, the number of children (i.e. incoming

edges) that a cell from a bifurcation state may have is not limited to six. Instead, the

number of children that a bifurcation cell may have is limited only by the window size W

69

of the CM. More specifically, the number of individual additions required by a cell in a

bifurcation state is W + 1. The number of comparisons required to find the maximum of

those additions is log2(W + 1). For the CMs in the Rfam 8.0 database, W can range from

as low as 40 to as high as 1200.

To make the computations required for cells in bifurcation states more like the

computations for cells in non-bifurcation states, each bifurcation computation is broken

up into a series of smaller computations. It is these smaller computations that are mapped

into nodes in the task graph that represents the CM. As mentioned above, the computation

for each bifurcation node can be broken down into a set of additions and comparisons.

Because non-bifurcation nodes in the task graph can represent as few as one addition and

as many as six, it is given that an architecture will need to have resources capable of handling

computations in sets of one to six. It is those resources onto which the computations for

bifurcation nodes must be mapped. Given the above, the number of addition nodes required

in the task graph for a single cell in a bifurcation state can be expressed as:

⌈
k + 1
x

⌉
where x is the number of additions per node and 0 ≤ k ≤ d

The number of addition nodes required in the task graph for all cells in a single window W

of a bifurcation state can be expressed as:

W∑
j=0

j∑
k=0

⌈
k + 1
x

⌉
where x is the number of additions per node and 0 ≤ k ≤ d

The number of comparison nodes required in the task graph for a single cell in a bifurcation

state is:

logxd k+1
x e∑

i=1


⌈
k+1
x

⌉
xi

 where x is the number of comparisons per node and 0 ≤ k ≤ d

70

The number of comparison nodes required in the task graph for all cells in a single window

W of a bifurcation state is:

W∑
j=0

j∑
k=0

logxd k+1
x e∑

i=1


⌈
k+1
x

⌉
xi

 where x is the number of comparisons per node and 0 ≤ k ≤ d

The total number of nodes required in the task graph for all cells in a single window W of

a bifurcation state is:

W∑
j=0

j∑
k=0

⌈k + 1
x

⌉
+

logxd k+1
x e∑

i=1


⌈
k+1
x

⌉
xi




5.5 Covariance Model Numeric Representation in Hardware

Before developing architectures to accelerate the algorithm in Section 5.3.3 it is important

to understand the range of values that can be generated by the algorithm.

CMs included in the Rfam 8.0 database represent transition and emission probabili-

ties as log-odds probabilities accurate to three decimal places [33]. The Infernal software

package [37] represents these values as floating-point values and performs floating-point ad-

dition to compute the final log-odds score of the most likely parse of an input sequence.

Because floating-point units are expensive in terms of hardware resource utilization, it is

desirable to avoid floating-point computation in hardware. Fortunately, the DP recurrence,

described in Section 5.3.3, requires only floating-point addition, and no floating-point mul-

tiplication. This means that all log-odds probabilities can be converted into signed integer

values by multiplying them by 1000, which can subsequently be summed quickly and effi-

ciently using integer adders in hardware. Multiplying the CM probabilities by 1000 allows

all data in the model to be utilized so there is no data loss during the DP computation in

hardware.

To utilize hardware logic and memory resources most efficiently, it is desirable to

represent the signed integer scores computed by the DP algorithm with as few bits as

71

possible. Using too many bits would result in inefficient use of precious fast memory-

structures (such as block RAM) and could potentially limit the size of the CMs that can be

processed using the architecture. Additionally, too many bits would result in adders with

excessively high latencies and degrade the overall performance of the architecture. Using

too few bits could cause the adders to become saturated on high scoring sequences, resulting

in computational errors, and ultimately incorrect scores being reported for those sequences.

To determine the minimum number of bits required to avoid saturation, one must

know the maximum values expected in the DP computation. In this work, the maximum

scores expected for all of the CMs in the Rfam 8.0 database were computed as follows.

Because there is often a penalty associated with insertions and deletions with respect to

the consensus structure, the maximum likelihood path through any CMM is the consensus

path ~π. To compute the maximum score expected γmax(~π|M), let v be a state inM, let Cv

be the set of states that are children of the state v, let tv(y) be the transition probability

from state v to state y where y ∈ Cv, and let ev be the set of emission scores associated

with state v. Then for any M with consensus path ~π:

γmax(~π|M) =
M−1∑

v=0,v∈~π
tv(y) + max ev

where y ∈ Cv, y ∈ ~π

That is, the sum of the transition probabilities along the consensus path plus the maximum

emission scores for each state along that path produces the maximum score that can be

computed for that model.

In computing the maximum scores for each of the CMs in the Rfam 8.0 database, it

was found that the maximum score over all models is 726.792, which was computed for the

model with the Rfam ID RF00228. When converted to a signed integer as described ear-

lier, the maximum value is 726,792 which can be represented using dlog2(726, 792)e bits +

1 sign bit = 21 bits. Using 21-bits ensures that there will be no loss of precision in a

hardware architecture for models that have maximum scores of up to 221−1

1000 = 1048.576.

72

Therefore, all models in the Rfam 8.0 database can be processed accurately without sat-

urating adders in a hardware architecture. If new CMs are developed in the future that

have maximum scores that are greater than 1048.576, additional bits will be required to

represent those scores.

A graph illustrating the distribution of maximum scores of all the CMs in the Rfam

8.0 database is shown in Figure 5.5. The maximum scores range from 28.683 (Rfam ID

RF00390) to 726.792 (Rfam ID RF00228). The graph also shows the number of bits required

to compute scores for the CMs without saturation. For example, using 18 bits to represent

probabilities supports only 58% of the CMs in the Rfam 8.0 database. The remaining 42%

of the CMs have maximum scores that are greater than 131.072 (i.e. 218−1

1000) and will saturate

18-bit adders. Using 19 and 20 bits, the architecture would be capable of supporting 91%

and 98% of the CMs respectively. As shown in Figure 5.5, all Rfam 8.0 models can be

supported using 21 bits.

21-bits [100% of models]

20-bits [98%]

19-bits [91%]

18-bits [58%]
0

200

400

600

800

1000

1200

Covariance Models

M
ax

im
u

m
 S

co
re

 f
o

r
C

M
s

21-bits [100% of models]

20-bits [98%]

19-bits [91%]

18-bits [58%]

21-bits [100% of models]

20-bits [98%]

19-bits [91%]

18-bits [58%]
0

200

400

600

800

1000

1200

Covariance Models

M
ax

im
u

m
 S

co
re

 f
o

r
C

M
s

Figure 5.5: Distribution of maximum scores of all CMs in the Rfam 8.0 database

73

Figure 5.6 illustrates the relationship between the number of states in a CM and the

maximum score computable for that CM. The graph shows a linear relationship, which is

to be expected, since the scores are computed as a summation over the states in the CM.

As the number of states in a CM increases, the maximum score computable also increases.

Using the trend seen in Figure 5.6, the maximum number of states that can be supported

using 21 bits can be approximated to be 2750 states. This is approximately 1.5× more than

the number of states in any currently available CM.

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500

Number of States in CM

M
ax

im
u

m
 S

co
re

 f
o

r
C

M
s

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500

Number of States in CM

M
ax

im
u

m
 S

co
re

 f
o

r
C

M
s

Figure 5.6: Graph depicting the linear relationship between the number of states in a CM
and the maximum score computable for that CM

Although positive saturation is of much greater concern for this architecture, it is

still important to note that negative saturation is also a possibility. However, unlike when

finding the maximum possible score for a CM, there is no single path through a CM that

defines the minimum possible score. In fact, there are many paths through a CM, all certain

to include some combination of insertion and deletion states, that will result in very low

74

scores. To determine which of these paths provides the minimum possible score for a CM, a

score must be computed for all paths in the CM. However, this is still insufficient to ensure

that negative saturation cannot occur. Because the number of insertions is bounded by the

window size W , and W can be increased (or decreased) by a knowledgeable computation

biologist, it is impossible to definitively compute a minimum score for a CM. Increasing W

increases the number of insertions possible, thereby decreasing the minimum possible score.

Instead of trying to determine the minimum score possible for a CM, it is straight-

forward to show that any sequence that causes negative saturation cannot also exceed a

score reporting threshold ρ when ρ > 0. Scores that are less than zero are uninteresting

since a sequence that generates such a score does not align well to the CM.

The maximum positive value that can be computed for a CM M has already been

defined as γmax(~π|M), which can be represented as a two’s complement signed integer using

k bits. That is, 0 < γmax(~π|M) ≤ 2k

2 . In a two’s complement system, these k bits are also

sufficient to represent −(2k

2 + 1) where −(2k

2 + 1) < −γmax(~π|M) < 0. Therefore, for any

negative value γnsat that causes negative saturation, γnsat < −(2k

2 +1) < −γmax(~π|M) < 0.

From this, it follows that γnsat + γmax(~π|M) < 0 ≤ ρ. Thus it is shown, that if negative

saturation does occur, there is not enough “positive value” (i.e. no path through M) that

will allow a sequence to generate a final score that is greater than or equal to ρ. Therefore,

negative saturation may cause computational errors, but these errors are ignorable since

any score containing one of these errors will never be reported.

5.6 Chapter Summary

This chapter provided a background on RNA secondary structure alignment. Included was

a description of covariance models, and the dynamic programming parsing algorithm used

to search residue databases for homologous RNA sequences. Additionally, a technique to

convert the dynamic programming matrix into a directed task graph was also presented.

Finally, covariance models from the Rfam 8.0 database were characterized to determine

some of the hardware requirements necessary to develop an architecture that can perform

RNA secondary structure alignment.

75

Chapter 6

The Baseline Architecture

To better understand the level of acceleration achievable using custom hardware, a baseline

architecture was developed. The baseline architecture computes the value for each cell of

the dynamic programming (DP) matrix immediately after (i.e. on the next clock cycle)

all of the cells that it depends on have been computed. That is, the baseline architecture

computes all the values for the three-dimensional DP matrix in the fewest possible clock

cycles. As a single engine solution, the baseline architecture represents an optimal solution

to the DP problem described in Section 5.3.3. However, as discussed later in this chapter,

the resource requirements of the baseline architecture make it impractical for even small

CMs.

6.1 Overview

The baseline architecture takes advantage of the graph-like structure of covariance models

(CMs) and converts the structure directly into a pipelined architecture of processing ele-

ments (PEs), where each PE represents a cell in the DP matrix. Provided a CM from the

Rfam database, the pipelined architecture can be automatically generated specifically for

that CM. The generated hardware can subsequently be programmed onto reconfigurable

hardware for an optimal hardware solution for that specific CM.

76

As mentioned in Section 5.3.3, each state in a CM is represented as a two-dimensional

matrix of width W + 1 and height L + 1, where W is the size of the window sliding over

the target sequence in which to align the CM, and L is the length of the target sequence

(typically, W � L). There are M such two-dimensional matrices, where M is the number

of states in the CM. For a given CM, there are a total of approximately MWL matrix cell

values that need to be computed to score the CM against all possible subsequences of a

target sequence that are of length ≤W .

However, it is not necessary to have the hardware resources for a PE for each of

the MWL cells in the DP matrix. Instead, the number of PEs required can be reduced

by observing that each position of the sliding window can be computed independently of

all other window positions. This means that the pipelined architecture only needs PEs

for a single window position which can be reused for all other window positions. Because

of hardware reuse, the actual number of PEs required in the pipeline is approximately

M(W + 1)2, which is much less than MWL for large genome databases.

6.2 Processing Elements

To best illustrate the baseline architecture, this chapter presents an example CM, the cor-

responding architecture, and implementation results. A small example CM, along with its

expanded state notation, is shown in Figure 6.1. The CM represents a very small consensus

secondary structure consisting of only three residues, where the first and the third residues

are base-paired. The CM consists of four nodes and thirteen states, as shown in Figure 6.1.

Figure 6.2 provides a high-level view of how the CM is converted into a pipeline.

States at the bottom of the CM are computed first and are thus at the beginning of the

pipeline. The states in the ROOT0 node are computed last and are thus at the end of the

pipeline. A residue pipeline feeds the target sequence through a pipeline from which PEs

can determine what emission score (if any) should be added to their score.

As described earlier, each state in a CM can be represented as a two-dimensional

matrix of width and height W + 1. For the example CM described here, the window size

was configured as W = 3, resulting in a total of thirteen 4 × 4 matrices. One of those

77

S0

MATL2

D10ML9

IL11

MATP1

MP3 D6MR5ML4

IL7 IR8

ROOT0

IL1 IR2

MATP1

ROOT0

MATL2

END3

1

2

3

END3

E12

S0

MATL2

D10ML9

IL11

MATP1

MP3 D6MR5ML4

IL7 IR8

ROOT0

IL1 IR2

MATP1

ROOT0

MATL2

END3

1

2

3

END3

E12

Figure 6.1: A small CM, consisting of four nodes and thirteen states, represents a
consensus secondary structure of only three residues

S0

residue
pipeline

IL1

IR2

MP3

IL7

D10

ML4

MR5

D6

IR8

ML9

IL11

E12

MATL2END3 MATP1 ROOT0

S0

residue
pipeline

IL1

IR2

MP3

IL7

D10

ML4

MR5

D6

IR8

ML9

IL11

E12

MATL2END3 MATP1 ROOT0

Figure 6.2: A high-level view of a pipeline for the baseline architecture

78

matrices representing state ML4 is shown in Figure 6.3. Note that the first column of the

matrix is initialized to −∞ as described by the DP algorithm in Section 5.3.3. The dark

gray cells in the matrix need not be computed as they represent negative values of i, the

starting position of a subsequence. The remaining matrix cells contain the values that are

computed as part of the DP computation. They represent the log-odds scores that the

subsequences represented by those matrix cells are rooted at the given state.

ML4

j �

d �

.40-INF

.22.72.30-INF

.30.44-INF

-INF

+

+

+

+

=

=

=

+

IL7,3,2

IR8,3,2

ML9,3,2

D10,3,2
ML4_t(10)

ML4_t(9)

ML4_t(8)

ML4_t(7)

ML4_e(A)

ML4_e(C)

ML4_e(G)

ML4_e(U)

input residue, xi

ML4,3,3 =
.22

0 1 2 3

0

1

2

3

ML4ML4

j �

d �

.40-INF

.22.72.30-INF

.30.44-INF

-INF

+

+

+

+

=

=

=

+

IL7,3,2

IR8,3,2

ML9,3,2

D10,3,2
ML4_t(10)

ML4_t(9)

ML4_t(8)

ML4_t(7)

ML4_e(A)

ML4_e(C)

ML4_e(G)

ML4_e(U)

input residue, xi

ML4,3,3 =
.22

0 1 2 3

0

1

2

3

Figure 6.3: Each CM state is represented as a two-dimensional matrix, and each matrix
cell is represented as a processing element containing adders and comparators.

Figure 6.3 also shows an example of a PE that is part of the pipelined architecture.

The number of children states that a state may depend on ranges from one to six, depending

on the structure of the CM. This particular PE is part of a state that has four children

states as illustrated in Figure 6.1. Therefore, the maximization portion of the PE requires

four adders and three comparators. An additional adder is included to factor the emission

probability into the computation, which is dependent on the input residue at location xi

of the target sequence in an ML type state (MR states depend on the residue at location

xj of the target sequence, and MP states depend on the residue at both the xi and the xj
79

locations of the target sequence). The largest PE, which contains inputs for six children

states, has a total of seven adders and five comparators.

In the PE shown in Figure 6.3, gray boxes represent the constant values for transition

and emission probabilities from the CM. For example, ML4 t(7) represents the transition

probability from state ML4 to state IL7. The value ML4 e(G) represents the probability

that the residue G is emitted by state ML4 of the CM. The other inputs, such as IL7,3,2,

represent the matrix cell values computed in the child states of state ML4. More specifically,

IL7,3,2 represents the score output from the PE for the matrix cell ILv,j,d where v is the

state number, j is the position of the last residue of the subsequence, and d is the length of

the subsequence.

The output of the PE, ML4,3,3 represents the score of the subsequence x1...x3 when

rooted at state ML4. This value is forwarded to the PEs in the pipeline that depend on it.

For this CM, the PE ML4,3,3 only has a single dependent, S0,3,3 as per the structure of the

CM shown in Figure 6.1 and the DP algorithm described in Section 5.3.3. Note that states

IL1 and IR2 are also dependent on state ML4. However, because both of those state types

depend on values from column d − 1, neither of them contain PEs that are dependent on

the last column of a child state.

For the baseline architecture, all values are represented using 16-bit signed integers.

This provides a sufficient number of bits to compute the results for small CMs without

causing overflow. All adders and comparators in the hardware are implemented as 16-bit

adders and comparators.

6.3 Pipeline

Based on the structure of the CM, PEs are created and wired together to create the pipeline

for the baseline architecture. Figure 6.4 shows a small portion of the pipeline required for

the CM in Figure 6.1. The portion shown represents the first three rows (i.e. j = 0 through

j = 2) of the first three states (i.e. S0, IL1, and IR2) in the CM. The final results for

subsequences are output from the S0,j,d PEs which represent the S type states from the

ROOT0 node.

80

IR2,0,0 IL1,0,0
-INF S0,0,0

from MP(3,0,0)
from ML(4,0,0)
from MR(5,0,0)

from D(6,0,0)

-INF

IR2,1,0 IL1,1,0
-INF S0,1,0

from MP(3,1,0)
from ML(4,1,0)
from MR(5,1,0)

from D(6,1,0)

-INF

IR2,1,1 IL1,1,1 S0,1,1
from MP(3,1,1)
from ML(4,1,1)
from MR(5,1,1)

from D(6,1,1)

from MP(3,0,0)
from ML(4,0,0)
from MR(5,0,0)

from D(6,0,0)

IR2,2,0 IL1,2,0
-INF S0,2,0

from MP(3,2,0)
from ML(4,2,0)
from MR(5,2,0)

from D(6,2,0)

-INF

IR2,2,1 IL1,2,1 S0,2,1
from MP(3,2,1)
from ML(4,2,1)
from MR(5,2,1)

from D(6,2,1)

IR2,2,2 IL1,2,2 S0,2,2
from MP(3,2,2)
from ML(4,2,2)
from MR(5,2,2)

from D(6,2,2)

from IR(2,0,0)

from MP(3,1,0)
from ML(4,1,0)
from MR(5,1,0)

from D(6,1,0)

from IR(2,1,0)

from MP(3,1,1)
from ML(4,1,1)
from MR(5,1,1)

from D(6,1,1)

from IR(2,1,1)

IR2,0,0 IL1,0,0
-INF S0,0,0

from MP(3,0,0)
from ML(4,0,0)
from MR(5,0,0)

from D(6,0,0)

-INF

IR2,1,0 IL1,1,0
-INF S0,1,0

from MP(3,1,0)
from ML(4,1,0)
from MR(5,1,0)

from D(6,1,0)

-INF

IR2,1,1 IL1,1,1 S0,1,1
from MP(3,1,1)
from ML(4,1,1)
from MR(5,1,1)

from D(6,1,1)

from MP(3,0,0)
from ML(4,0,0)
from MR(5,0,0)

from D(6,0,0)

IR2,2,0 IL1,2,0
-INF S0,2,0

from MP(3,2,0)
from ML(4,2,0)
from MR(5,2,0)

from D(6,2,0)

-INF

IR2,2,1 IL1,2,1 S0,2,1
from MP(3,2,1)
from ML(4,2,1)
from MR(5,2,1)

from D(6,2,1)

IR2,2,2 IL1,2,2 S0,2,2
from MP(3,2,2)
from ML(4,2,2)
from MR(5,2,2)

from D(6,2,2)

from IR(2,0,0)

from MP(3,1,0)
from ML(4,1,0)
from MR(5,1,0)

from D(6,1,0)

from IR(2,1,0)

from MP(3,1,1)
from ML(4,1,1)
from MR(5,1,1)

from D(6,1,1)

from IR(2,1,1)

Figure 6.4: 18 of the 130 PEs required to implement the CM shown in Figure 6.1 using
the baseline architecture. The full pipeline structure can be automatically generated

directly from a CM.

6.4 Implementation Results

An implementation of the CM shown in Figure 6.1 was developed to compare the per-

formance of the baseline architecture to the performance of the Infernal (version 0.81)

software package. The evaluation system for the Infernal software contains dual Intel

Xeon 2.8 GHz CPUs and 6 GBytes of DDR2 SDRAM running Linux CentOS 5.0.

The baseline architecture was evaluated on the same system using an FPGA ex-

pansion card connected to the system via a 100 MHz PCI-X bus. The FPGA expansion

card contains a Xilinx Virtex-II 4000 FPGA. The baseline architecture was built using a

combination of Synplicity’s Synplify Pro v8.8.0.4 for synthesis and version 9.1i of Xilinx’s

ISE back-end tools for place-and-route. The implementation of the baseline architecture

for the small CM shown in Figure 6.1 occupies 88% of the slices available on the Xilinx

81

Virtex-II 4000 FPGA and 8% of the block RAMs. The implementation is highly pipelined

and can run at over 300 MHz, but was clocked at 100 MHz for the experiments presented

here.

By default, Infernal’s cmsearch tool does more work than the baseline architecture

presented in this chapter. In particular, Infernal’s cmsearch tool scans both the input

database sequence as well as the complement of that sequence. The default parameters also

prompt the cmsearch tool to output how subsequences mapped to a CM, as opposed to sim-

ply outputting the score for each of the high-scoring subsequences. To provide a more direct

comparison, the extra work done by Infernal can be eliminated by specifying the –toponly

and –noalign options to the cmsearch tool. These options prompt the cmsearch tool to scan

only the input sequence, and to only provide scores for the high-scoring subsequences.

Another option available to Infernal’s cmsearch tool includes the –noqdb option.

By default, the latest versions of Infernal utilizes Nawrocki’s Query Dependent Banding

(QDB) heuristic [53]. The –noqdb option disables the QDB heuristic and provides a more

direct comparison to the baseline architecture. For the experiments in this section, the

performance with and without QDB are reported.

Table 6.1 compares the performance of Infernal with that of the baseline architec-

ture. Testing was done on a randomly generated database sequence of 100 million residues.

The first two entries in the table represent the performance of the Infernal software pack-

age with and without the QDB heuristic. It should be noted that the speedup attainable by

the QDB heuristic is dependent on the CM. For the small model tested here, the speedup

was only 1.2×. Previous results have shown a speedup between 1.4× and 12.6×, with an

average speedup of 4.1× for QDB [53].

Run Type Time Speedup
Infernal 17m19.287s 1
Infernal (QDB) 14m28.706s 1.2
Baseline Architecture 0m42.434s 24.5

Table 6.1: Performance comparison between Infernal and the baseline architecture

82

The results for the baseline architecture running at 100 MHz shows a 24.5× speedup.

As with QDB, these results are quite conservative compared to the possible speedup achiev-

able with the baseline architecture. The baseline architecture processes one residue per clock

cycle regardless of the size of the CM. At 100 MHz, the baseline architecture can process

a database sequence of 100 million residues in 1 second (plus the latency of the pipeline,

∼60 clock cycles for the CM implemented here). The additional time shown in Table 6.1

(42.434− 1 = 41.434 seconds) represents the time to read the sequence from disk, transfer

the sequence to the hardware, and retrieve the results. As the size of the CM increases, the

time to send the database sequence to the hardware will stay the same, and the process-

ing time will increase only slightly as the latency of the pipeline increases. Therefore, the

degree of acceleration achievable is much greater with larger CMs. Provided a device with

sufficient hardware resources, the baseline architecture could achieve a speedup thousands

of times faster than Infernal running on a traditional CPU.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2000 2005 2010 2015 2020 2025 2030

Year

%
 o

f
C

M
s

th
at

 f
it

 o
n

to
 F

P
G

A

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2000 2005 2010 2015 2020 2025 2030

Year

%
 o

f
C

M
s

th
at

 f
it

 o
n

to
 F

P
G

A

Figure 6.5: Percentage of CMs that will fit onto hardware in a given year

83

However, the high resource requirement of the baseline architecture makes the ap-

proach somewhat impractical for today’s technologies. Figure 6.5 charts the percentage of

Rfam 8.0 CMs that will fit onto hardware in a given year provided that technology continues

to improve at the rate specified by Moore’s law. Note that at the time of writing, only about

5% of the CMs in the Rfam 8.0 database can be converted into a pipelined architecture

that will fit on today’s hardware.

6.5 Expected Speedup for Larger CMs

The experimental results presented in Section 6.4 are for a very small CM. This section

estimates the expected speedup that the baseline architecture can achieve when processing

much larger CMs. The estimate is based on several factors including the depth of the

pipeline required to process the CM, the I/O time required to transmit 100 million residues

to the baseline architecture (as measured in Section 6.4), and a clock frequency of 100 MHz

for the baseline architecture.

2797914711869238815642.43402061.000020620600206445094243415RF00041

206274198752031483642.43401871.000018718700187387723181038RF00034

4443791818852133600042.43402821.000028228200282432565484002RF00016

3027823612844334949242.43401951.000019519500195394923539545RF00001

Expected
Speedup

over Infernal
(w/QDB)

Expected
Speedup

over
Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)

Total Time
with

measured I/O
(seconds)

HW
Processing

Time
(seconds)

Latency
(ns)

Pipeline
Depth

Pipeline
Width

Num
PEsCM

2797914711869238815642.43402061.000020620600206445094243415RF00041

206274198752031483642.43401871.000018718700187387723181038RF00034

4443791818852133600042.43402821.000028228200282432565484002RF00016

3027823612844334949242.43401951.000019519500195394923539545RF00001

Expected
Speedup

over Infernal
(w/QDB)

Expected
Speedup

over
Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)

Total Time
with

measured I/O
(seconds)

HW
Processing

Time
(seconds)

Latency
(ns)

Pipeline
Depth

Pipeline
Width

Num
PEsCM

Table 6.2: Estimated speedup for baseline architecture running at 100 MHz

The results are presented in Table 6.2. The latency of the pipeline is computed as

PipelineDepth×PE latency where the PE latency is 10 cycles
100MHz since each PE has a 10 cycle

latency. The hardware processing time is the time, in seconds, that it takes the baseline

architecture to process 100 million residues when running at 100 MHz. This includes the

latency of the baseline architecture’s pipeline. The total time is the expected time, in

seconds, to process 100 million residues with the baseline architecture, including the 41.434

seconds (measured in Section 6.4) required to transmit 100 million residues to the baseline

architecture. The time required for Infernal to process a database of 100 million residues

84

was estimated from the measured time required to process 1 million residues on the test

machine described in Section 6.4. The expected speedup over Infernal for four different

CMs from the Rfam database is shown in Table 6.2. The baseline architecture exhibits an

estimated speedup of over 9, 000× over the Infernal software for CM RF00041. A speedup

of over 4, 000× is estimated for CM RF00016 when Infernal is run with the QDB heuristic.

Results for additional CMs from the Rfam 8.0 database are shown in Appendix C, where

the speedup exceeds 13, 000× for some CMs.

6.6 Chapter Summary

This chapter introduced a baseline architecture capable of searching genome databases for

homologous RNA sequences. The architecture consists of a pipeline of processing elements,

each of which represents a single computation from the three-dimensional dynamic pro-

gramming matrix. The processing elements are connected based on the the structure of the

covariance model. An implementation of the baseline architecture was developed for a small

CM and showed a 24.5× improvement over the Infernal software package. Additionally,

the performance of the baseline architecture was estimated for covariance models from the

Rfam database. The baseline architecture showed an estimated speedup of over 9, 000×

for one of the models tested in this chapter. Other results for models in Appendix C show

speedups in excess of 13, 000×.

85

Chapter 7

The Processor Array Architecture

Chapter 6 described a baseline architecture for accelerating RNA secondary structure align-

ment in hardware. By unrolling the alignment computation into individual processing

elements, the baseline architecture can potentially process genome databases many thou-

sands of times faster than software approaches such as Infernal. However, the baseline

architecture is limited by the steep resource requirements needed for the vast number of

computations in the alignment. This chapter introduces a second architecture that employs

a stored program model, where alignment computations are divided up onto an array of

processing elements (PEs) that can be used to perform the computation. The number of

PEs in the processor array can be increased or decreased to make the best use of available

hardware resources. PEs in the processor array architecture are similar in structure to

those described in Chapter 6 (e.g. Figure 6.3) with the only difference being that the con-

stant transition and emission probabilities from the baseline architecture are replaced with

rewritable registers. This allows each PE in the processor array to act as a shared resource

that can compute the result of any computation in the dynamic programming (DP) matrix.

Because the number of PEs is far less than the number of computations required to

align an RNA sequence to a covariance model (CM), computations must be scheduled onto

the available PEs. The remainder of this chapter describes the processor array architecture

and a scheduling algorithm capable of scheduling the necessary DP computations onto the

processor array.

86

7.1 Overview

The processor array architecture generalizes the approach taken with the baseline archi-

tecture presented in Chapter 6. The baseline architecture utilizes individual PEs for each

computation in the graph-like structure of CMs. This limits the size of the CMs that can

be processed using the baseline architecture as the number of PEs is bounded by physical

hardware resources. The processor array architecture described in this chapter employs PEs

using a more general technique so that any PE can be utilized to compute the result of any

computation in the graph-like structure of a CM.

The processor array architecture consists of three main components, an array of

processing modules (PMs), a multi-port shared memory structure, and a reporting mod-

ule. Inputs to the processor array architecture consist of a stream of residues, which is

Processor Array

Processing
Module 0

Shared
Data

Memory

Reporting
Module

Processing
Module 1

Main Instr.
FIFO

Processing
Module n

Instruction
Input

Residue
Input

Output
Scores

PE0_raddr[0-5]

PE1_raddr[0-5] in[6-11]

in[0-5]

out[6-11]

out[0-5]PE0_data[0-5]

PE1_data[0-5]

PE1_score

PE1_waddr

PE0_score

PE0_waddr

Figure 7.1: A high-level block diagram of processor array architecture with two processing
modules. The number of processing modules can be scaled as shown with dashed lines.

87

replicated and sent to each PM, and a stream of instructions, which is divided up so in-

structions are sent to the appropriate PM. The mapping of instructions to PMs is discussed

in Section 7.5.2. The architecture outputs only the scores for high scoring alignments. A

high-level block diagram of the processor array architecture is illustrated in Figure 7.1. Each

of the main components for the processor array architecture is described in more detail in

the following sections.

7.2 Processing Modules

The processing module is where all of the computation required for the RNA alignment

takes place. A block diagram of a PM is shown in Figure 7.2.

The core of the PM is similar to the PEs used in the baseline architecture. Each PE

consists of seven saturating adders and five comparators. The first six saturating adders

are used to sum results from previous computations with transition probabilities associated

with the state of the current computation. The five comparators in the PE determine the

maximum value from those summations and pass that value to the final adder in the PE.

The final saturating adder adds an emission probability which is selected from the local

Processing Module 0

Local T.
Registers

Local E.
Registers

Processing Element: PE0

+

+

+

+

+

+
=

=

=

=

+

=

PE0_data0

PE0 Covariance
Model Memory

Data
Address
Decoder

PE0_raddr0
PE0_raddr1
PE0_raddr2
PE0_raddr3
PE0_raddr4
PE0_raddr5

PE0_waddrwrite addr.
delay

PE0_score

PE0_data1

PE0_data2

PE0_data3

PE0_data4

PE0_data5

Reporting
Module

Data read
delay

PE0
Residue
Memory

PE0
Instr.
FIFO

Residue Input

Instruction Input

Figure 7.2: Block diagram of a single PM. Dashed lines represent components that are
only needed on the first PM.

88

emission probability memory. When a computation does not require the addition of an

emission probability, like those for start (S), delete (D), and bifurcation (B) states, a value

of zero is presented to the adder so as not to affect the result of the maximization portion of

the PE. Likewise, not all states in a CM have six children states, thus not all computations

require all six adders in the maximization portion of the circuit. In such cases, the largest

negative number possible (dependent on the number of bits used in the architecture) is

presented to the unused adders so as not to affect the result of the maximization portion of

the PE.

In addition to the PE core, PMs also contain a variety of memories for different

functions of the PM. An instruction FIFO collects and stores instructions from an input

stream until they are ready to be executed. A dual ported residue memory stores a single

window’s (W) worth of residues. Only one port is used when executing computations for the

single emission states ML and MR. Both ports are required when executing computations

for the pairwise emission state MP .

Each PM also contains its own memory for storing CM information such as transition

and emission probabilities. Transition and emission probabilities are loaded into the memory

during initialization and reused throughout the computation. Because each PM has its

own CM memory, it has unrestricted access to the probabilities required for the alignment

computation. Additionally, the CM memory for each PM stores only the probabilities

required by the computations that are to be executed on that PM. During an alignment

computation, the necessary transition and emission probabilities are read from the CM

memory and stored in local registers where they are immediately available to the PE. This

design makes effective use of distributed memories, such as block RAMs on an FPGA or

embedded SRAM on an ASIC.

Data computed by each PM is stored in a shared memory that is shared by all PMs

in the processor array architecture. For each instruction executed, each PM may issue up

to six reads to the shared memory. The data returned from the shared memory is used as

input to the PE adders. Because each PM only produces a single result for each instruction

executed, only a single write interface to the shared memory is required.

89

Scaling the performance of the processor array architecture can be accomplished by

increasing the number of PMs in the array. A discussion on the scalability of the processor

array architecture is presented later in Section 7.6.4.

7.2.1 Instruction Format

The instruction format utilized by the processor array architecture is a long instruction

word that contains all of the information necessary to complete the computation. The in-

struction format has fields for the state value v, the starting position of a test alignment

i, the end position of a test alignment j, six read address pointers raddr0 through raddr5,

and a write address pointer waddr where the result is to be written. An example of the

long instruction word is shown below:

[v, i, j, raddr0, raddr1, raddr2, raddr3, raddr4, raddr5, waddr]

The number of bits required for each of the fields in the instruction word is dependent

on a number of factors. The values for v, i, and j must be large enough to handle the largest

CMs that are to be processed. Using 10 bits for each of v, i, and j allows the processor

array architecture to process CMs with up to 1024 states and window sizes W up to 1024.

The number of bits required for each of the read address pointers and the write address

pointer is dependent on the number of processors in the processor array architecture. More

details on the number of bits required for each pointer are discussed in Section 7.6.4.

The analysis presented later in Section 7.6 is based on fixed-length instructions as

described above. However, it would also be possible to use variable-length instructions for

the processor array architecture. Based on an analysis of the CMs in the Rfam 8.0 database,

the average number of reads required for a computation is approximately 4, where ∼ 42% of

computations required 3 reads and ∼ 40% of computations require 6 reads. Eliminating the

unnecessary read addresses from instructions could help to reduce the bandwidth required

for instruction execution considerably.

90

7.2.2 Executing Instructions

Instruction execution on the processor array architecture works similarly to that of a tradi-

tional instruction pipeline, with stages for fetching and decoding instructions, reading and

writing data memory, and execution. On each clock cycle a single instruction is read from

the instruction FIFO of the PM. The seven memory addresses (one write address, and up

to six read addresses) are sent to the data address decoder where they are divided onto

the respective read of the shared memory interface. The data address decoder also extracts

the write address, that is the shared memory location where the result of the instruction

should be stored, and sends it to a delay module. The write address is not needed until

the computation has completed. Other portions of the instruction that indicate the state

number as well as the i and j residue positions for the computation are also delayed until

the data from the shared memory becomes available.

The data returning from the shared memory represents computations from the CM

states that are children of the current CM state computation being executed. Synchronously

with the arrival of data from the shared memory, the necessary transition and emission

probabilities are read from the CM memory and stored in local registers. Additionally, one

or two residues are read from the residue memory and used to select the emission probability

that will be used, if any, by the PE to complete the computation.

Upon completion of the computation by the PE, the result is written to shared

memory in the location specified by the instruction and previously stored in the delay unit.

Computations for state v = 0 are not stored in the shared memory structure. Instead, they

are sent to a reporting module for further processing.

7.3 Shared Memory Structure

One of the pivotal components of the processor array architecture is the shared memory

structure. Throughout the alignment computation, results computed on one PM may be

required by other PMs in the processing array. The shared memory structure provides a

means for communicating results between PMs.

91

The shared memory structure is a large memory bank composed of many smaller

memories, each with its own read and write interfaces. This approach allows a large number

of independent reads and writes per clock cycle and increases the effective bandwidth of the

memory interface. The shared memory is partitioned in such a way so that each PM writes

results to a designated region of the memory. However, each PM can read any location

from any of the available memories in the structure. Furthermore, each PM can issue up to

six memory reads per clock cycle. Therefore, if the processor array has multiple PMs, the

number of concurrent memory reads on any given clock cycle may be as high as 6p where

p is the number of PMs in the processing array.

The size and number of each memory required in the shared memory structure

is dependent on the CM being processed. However, since each PM can issue up to six

simultaneous reads to the shared memory structure, the minimum number of individual

memories required for each PM is six. A discussion on the required size of those memories

is presented in Section 7.6.3.

7.3.1 Writing Results to the Shared Memory Structure

As previously mentioned, each PM in the processor array architecture is allocated a portion

of the shared memory structure where it writes its results. Additionally, because each PM

only needs to write a single result per clock cycle, the write interface of the shared memory

structure is considerably simpler than the read interface. Figure 7.3 illustrates the write

interface to one region of the shared memory structure. The region shown is for a single

PM and consists of six individual memories. In the example configuration, the value being

written is an 18-bit value and the write address is a 15-bit value. The most significant

bits are used to select which of the available memories in which to write the data. The

remaining bits of the write address are used to address the individual memories.

92

PE0
MEM2

data_outread_addr

wr_addr

wr_en

data_in

PE0_we

PE0_waddr

PE0_score

(14:0)

(17:0)

(14:12)

(11:0)

PE0
MEM3

data_outread_addr

wr_addr

wr_en

data_in

PE0
MEM4

data_outread_addr

wr_addr

wr_en

data_in

PE0
MEM5

data_outread_addr

wr_addr

wr_en

data_in

PE0
MEM0

data_outread_addr

wr_addr

wr_en

data_in

PE0
MEM1

data_outread_addr

wr_addr

wr_en

data_in

Figure 7.3: Write interface configuration for a single PM with six individual memories

7.3.2 Reading Data from the Shared Memory Structure

The read interface for the shared memory structure allows any PM in the processor array

architecture to read a value from any memory in the structure. To accomplish this, the

available memories in the shared memory structure are interfaced to the PMs via a pair of

switching fabrics. There are many types of switching fabrics available, each with its own

pros and cons. The requirements for the shared memory structure are that the switching

fabric be non-blocking and that it be scalable. Non-blocking behavior is desirable so that

all memory reads have the same known latency. This ensures that all PMs in the processing

array can operate continuously without running the risk of desynchronization with other

PMs. As described later, synchronization between PMs is built into the schedules for each

PM. Using a switching fabric with blocking behavior (i.e. buffering) could stall a memory

read for one PM while allowing another to proceed. This could desynchronize the PMs

producing unknown results. The switching fabric must also be scalable so that as more

PMs are added to the processing array, more read interfaces can be added to the shared

memory structure.

Given these requirements, a Banyan switch [32] was selected to interface the PMs

to the memories in the shared memory structure. Banyan switches are non-blocking and

scalable [34]. Additionally, Banyan switches can be easily pipelined, allowing for very high-

speed designs. However, the Banyan switch does have two restrictions that need to be

considered. The first restriction is that no two inputs to the Banyan switch can be routed

93

1K x 18bit
BRAM

read_addr

wr_addr

wr_en

wr_addr

1K x 18bit
BRAM

read_addr

wr_addr

wr_en

wr_addr

1K x 18bit
BRAM

read_addr

wr_addr

wr_en

wr_addr

1K x 18bit
BRAM

read_addr

wr_addr

wr_en

wr_addr

1K x 18bit
BRAM

read_addr

wr_addr

wr_en

wr_addr

Return
Addr. Reg

1K x 18bit
BRAM

read_addr

wr_addr

wr_en

wr_addr

1K x 18bit
BRAM

read_addr

wr_addr

wr_en

wr_addr

1K x 18bit
BRAM

read_addr

wr_addr

wr_en

wr_addr

1K x 18bit
BRAM

read_addr

wr_addr

wr_en

wr_addr

1K x 18bit
BRAM

read_addr

wr_addr

wr_en

wr_addr

Input
Banyan
Switch

out0

out5

out4

out3

out2

out1

out6

out11

out10

out9

out8

out7

in6

in11

in10

in9

in8

in7

in0

in5

in4

in3

in2

in1

PE0
MEM0

data_outread_addr

wr_addr

wr_en

data_in

PE1
MEM0

data_outread_addr

wr_addr

wr_en

data_in

Return
Addr. Reg

(15:4)

(3:0)(15:0)

Output
Batcher
Switch

out0

out5

out4

out3

out2

out1

out6

out11

out10

out9

out8

out7

in6

in11

in10

in9

in8

in7

in0

in5

in4

in3

in2

in1

(17:0)

(21:18)

Output
Banyan
Switch

out0

out5

out4

out3

out2

out1

out6

out11

out10

out9

out8

out7

in6

in11

in10

in9

in8

in7

in0

in5

in4

in3

in2

in1

Input
Batcher
Switch

out0

out5

out4

out3

out2

out1

out6

out11

out10

out9

out8

out7

in6

in11

in10

in9

in8

in7

in0

in5

in4

in3

in2

in1

PE0_raddr0

PE0_raddr1

PE0_raddr2

PE0_raddr3

PE0_raddr4

PE0_raddr5

PE1_raddr0

PE1_raddr1

PE1_raddr2

PE1_raddr3

PE1_raddr4

PE1_raddr5

PE0_data0

PE0_data1

PE0_data2

PE0_data3

PE0_data4

PE0_data5

PE1_data0

PE1_data1

PE1_data2

PE1_data3

PE1_data4

PE1_data5

(19:0)

(19:0)

(19:0)

(19:0)

(19:0)

(19:0)

(19:0)

(19:0)

(19:0)

(19:0)

(19:0)

(19:0)

(17:0)

(17:0)

(17:0)

(17:0)

(17:0)

(17:0)

(17:0)

(17:0)

(17:0)

(17:0)

(17:0)

(17:0)

(15:4)

(3:0)(15:0)

(21:18)

(17:0)

Figure 7.4: Switched read interface for two PMs, each with six individual memories

to the same output port. This would result in contention not only at the output of the

Banyan switch, but also at the memory since each memory only has a single read interface.

This type of contention is prevented by ensuring that no two PMs are ever scheduled to read

the same memory interface on any given clock cycle. Section 7.5.2 provides more details on

removing memory contention from the schedule.

The second restriction of the Banyan network is that certain inputs can cause internal

collisions [34]. An internal collision in the Banyan switch can result in one or more of

the inputs being routed to the wrong output port. As shown by Batcher, these types of

collisions can be avoided by pre-sorting all inputs to the switch [9]. A Batcher switch, which

performs a merge sort on its inputs, can be used to pre-sort memory read prior to sending

them through the Banyan switch. On each clock cycle, the Batcher switch can take up to k

inputs. Those k inputs are then sorted in ascending order and output on the first k outputs

of the Batcher switch. The sorted outputs of the Batcher switch can then pass through the

Banyan switch with no collisions.

94

Figure 7.4 shows the configuration of the Batcher and Banyan switches as well as the

individual memories. To perform a read on one of the memory interfaces, a PM combines

a 16-bit memory address with a 4-bit return address. The most significant bits of the

memory address are used to route the read through the switching fabric to the appropriate

memory. The remaining bits of the memory address are used to read the required value

from the memory. The 4-bit return address is used to route the newly read data back

to the appropriate interface of the PM that issued the read. The memory structure in

Figure 7.4 illustrates the structure required when using two PMs, each with six memories.

The number of bits required to route memory reads from PMs to the appropriate memory,

and the resulting value back to the PM, varies with the number and size of individual

memories in the shared memory structure and the number of PMs in the processor array.

Removal of the Banyan Switch

To conserve hardware resources and reduce the latency of memory reads, it is possible to

remove the Banyan switch from the shared memory structure. As mentioned in the previous

section, the Batcher switch sorts k inputs in ascending order onto its first k outputs. Those

outputs are then passed into the Banyan switch which routes the values to the appropriate

output port. If all k input ports to the Batcher switch are provided a value to sort, then all

k output ports of the Batcher switch will have a value once the sort is complete. Because

all memory reads on the processor array architecture are scheduled, the schedule can be

modified to ensure that all input ports to the Batcher switch are busy on all cycles. The

end result is that all memory reads can be sorted to the appropriate ports without the

need of the Banyan switch. This can be accomplished by inserting dummy reads into the

schedule to ensure that all memories in the shared memory structure are being read even if

the resulting value is unused.

7.4 Reporting Module

The reporting module is a small component that resides at the output of the first processing

module. The function of the reporting module is to compare the scores that are output

95

from the processing module to some threshold value and report any scores that exceed that

threshold. Along with the score, the reporting module also reports the starting position i

and ending position j of the high-scoring alignment. Since the final scores for an alignment

are computed in state v = 0 at the root of the CM, and because of the way computations

are assigned to the available processing modules (discussed later in Section 7.5.2), only the

first processing module requires a reporting module.

7.5 Scheduling Computations

The number of PEs that can be utilized by the processor array architecture is dependent on

the implementation platform. Platforms with more hardware resources can accommodate

more PEs than platforms with fewer hardware resources. To determine how each of the

available PEs are used, a polynomial-time scheduling algorithm is employed to determine the

ordering of computations and how those computations are distributed among the available

PEs.

As shown in Chapter 6, the DP computation required to align a target sequence

to a CM can be thought of as a directed task graph. A survey paper by Kwok and Ah-

mad provides an in-depth survey of static scheduling algorithms for mapping directed task

graphs to multiple processors [43]. In this survey, the authors note that there are only

three special cases for which there currently exists optimal, polynomial-time scheduling

algorithms. Those cases, as enumerated by Kwok and Ahmad [43], are: (1) scheduling

tree-structured task graphs with uniform computation costs onto an arbitrary number of

processors [36], (2) scheduling arbitrary task graphs with uniform computation costs on two

processors [22], and (3) scheduling an interval-ordered task graph [27] with uniform node

weights to an arbitrary number of processors [68].

By using PEs that have constant computational latency, the problem of scheduling

the task graph that represents the DP matrix for RNA alignment fits into the first special

case listed above. An algorithm developed by T.C. Hu [36] provides an optimal, linear-time

scheduling algorithm for such problems, and a good starting point for scheduling the DP

matrix computations onto the available PEs.

96

7.5.1 Optimal Scheduling of Directed Task Graphs

Hu’s scheduling algorithm [36] constructs optimal schedules for tree-structured directed

acyclic task graphs where each graph node takes unit computation time. The algorithm

works for an arbitrary number of processors and can therefore be used regardless of the

number of PEs available on a given platform. The scheduling algorithm runs in linear time

in terms of the number of DP matrix cells in a CM that need to be scheduled.

For the processor array architecture, a schedule is constructed for a single window

position of the CM over the input genome database. That schedule can then be reused for

each window position of the CM. Hu’s scheduling algorithm processes each cell in the DP

matrix as a graph node in a task graph. The first stage of the scheduling algorithm involves

labeling each of the nodes in the graph with a distance value. Starting from the exit node

of the graph (all S0,j,d cells of ROOT0 are exit nodes and all Ev,j,d cells are entry nodes),

each node is labeled with its distance from the exit node. The distance of a node is the

number of graph edges between that node and the exit node. If multiple paths exist, a node

is assigned the distance of the longest path.

Once all the nodes in the graph have been labeled, an optimal schedule for a platform

with p processors can be constructed as follows: (1) schedule the p (or fewer) nodes with

the greatest distance labels and no predecessors. If there are more than p nodes with no

predecessors, nodes with higher distance labels should be scheduled first. If there are fewer

Label nodes with
distance labels

More nodes
in graph?

Schedule the p (or fewer)
nodes with the greatest
distance labels and no

predecessors

Remove the newly
scheduled nodes from

the graph

Done

Yes

No

Figure 7.5: Flow Diagram of Hu’s scheduling algorithm

97

than p nodes with no predecessors, then fewer than p nodes must be scheduled and some

processors will go unused during that time slot; (2) remove the nodes that were scheduled

in step (1) from the graph; (3) repeat steps (1) and (2) until all nodes are scheduled and

there are no more nodes in the graph. Figure 7.5 provides a flow diagram of Hu’s scheduling

algorithm. Figure 7.6(a) illustrates an example task graph where each node is labeled with

a distance d from the end node N0. A schedule developed using Hu’s algorithm for an

unlimited number of processors (i.e. p =∞) is shown in Figure 7.6(b). Figure 7.6(c) shows

a schedule for the same task graph when only two processors are available.

Schedule:

t = 0: N5, N4, N3
t = 1: N2, N1
t = 2: N0

(b)

Schedule:

t = 0: N5, N4
t = 1: N3, N2
t = 2: N1
t = 3: N0

(c)

N0
d = 0

N2
d = 1

N3
d = 1

N4
d = 2

N5
d = 2

N1
d = 1

(a)

Figure 7.6: (a) An example task graph with distance labels; (b) schedule for task graph in
(a) using unlimited processors; (c) schedule for task graph in (a) using two processors

7.5.2 Scheduling Task Graphs on Finite Resources with Computational

Latency

While Hu’s scheduling algorithm does provide a good starting point for scheduling the DP

matrix computations, there are a few shortcomings with Hu’s algorithm as it relates the

desired application. The first of these shortcomings is that the algorithm does not account

for physical hardware resources or computational latencies. For example, the example

schedule in Figure 7.6(b) shows that graph nodes N2 and N1 can be scheduled at time

t = 1, and that the graph node N0 can be scheduled in the subsequent time slot t = 2.

98

However, if the computation represented by node N0 is dependent upon the result of the

computation represented by node N1, and there is some latency associated with computing

the result of node N1, then node N0 cannot be scheduled until time tN0 = tN1 + l, where l

is the computational latency.

Another hardware restriction that Hu’s scheduling algorithm does not take into

account is memory. The problem originates from the arbitrary choice of p computations from

the pool of available computations at each time slot. In scheduling computations arbitrarily,

Hu’s algorithm does not account for the possibility that multiple computations may require

accessing different data from the same memory bank. Without memory arbitration, this

could lead to potential memory conflicts. With memory arbitration, additional control

would be required to ensure that the PEs do not become desynchronized.

Finally, Hu’s algorithm does not take advantage of any problem-specific knowledge.

For example, if there are more than p computations that can be scheduled in a particular

time slot, each with an identical distance label, Hu’s algorithm does not differentiate between

them. Instead, p of the available nodes are chosen arbitrarily and scheduled. Choosing

nodes more intelligently by utilizing additional information associated with each node may

help to reduce the hardware resources required and the total time required to complete the

computation.

The remainder of this section describes several modifications that were made to Hu’s

scheduling algorithm to produce an algorithm suitable for scheduling the DP matrix com-

putations for RNA alignment onto an array of processors while accounting for hardware

restrictions. Instead of specifying some number of processors to Hu’s scheduling algo-

rithm and allowing the algorithm to choose the ordering of computations arbitrarily, Hu’s

scheduling algorithm is run on a task graph assuming an unlimited number of processors.

The output is an optimal schedule for the task graph that provides the earliest possible

time that each node can be scheduled (see Figure 7.6(b)). From that schedule, restrictions

can be introduced and intelligent decisions can be made regarding which of the available

computations should be scheduled in a given time slot. A flow diagram of the modifications

to Hu’s schedule is shown in Figure 7.7.

99

Schedule CM with
Hu’s algorithm using
unlimited processors

Remove
computations from
time slot at head of

Hu’s schedule

Sort computations
descending by state
and ascending by
schedulable time

Assign computations
to available
processors

Resolve memory
conflicts

More time slots in
Hu’s schedule?

Done

Add computational
latency to children of

all scheduled
computations

Yes

No

Figure 7.7: Flow Diagram of Modified Hu’s scheduling algorithm

Accounting for Computational Latency

The first modification to Hu’s scheduling algorithm was developed to account for the com-

putational latency of the PEs used in the architecture. Although the time to complete each

computation is uniform, this time must still be represented in the schedule. This is because

each time slot in the schedule is the equivalent of a single clock cycle in hardware, and

without the appropriate delays built into the schedule a computation may be scheduled to

execute prior to the availability of a required result from a previous computation. Account-

ing for the latency of a computation can be done by recursively traversing the task graph and

setting the scheduled time for each child of a node n to tchildNode = max(tchildNode, tn + l).

Figure 7.8(b) shows the effect of adding computational latency equal to 10 time units into

the schedule. Note that the scheduled times for the nodes in Figure 7.8(b) are no longer

t = 0, 1 and 2 as they were in Hu’s original algorithm (Figure 7.5), but instead t = 0, 10

and 20.

Accounting for computational latency in the initial Hu schedule will still result

in an optimal schedule with regards to how quickly the hardware platform can correctly

produce the result of the desired computations. If no other changes are made to the initial

Hu schedule, then a modified Hu schedule that accounts for the computational latency

of the hardware will be exactly ScheduleLengthHu × l in length. However, throughout

100

the development of a schedule, computations may be delayed for various other reasons

as described in the next few sections. Each time the scheduled time of a computation is

adjusted for other conflicts, all descendants of that computation in the task graph need to

be adjusted to account for the computational latency. Because not all conflicts are resolved

optimally, the final modified schedule may no longer be optimal.

N0
d = 0

N2
d = 1

N3
d = 1

N4
d = 2

N5
d = 2

N1
d = 1

(a)

Schedule:

t = 0: N5, N4, N3
t = 10: N2, N1
t = 20: N0

(b)

Schedule:

t = 0: N5, N4
t = 1: N3
t = 10: N2, N1
t = 20: N0

(c)

Figure 7.8: (a) An example task graph with distance labels; (b) schedule for task graph in
(a) using unlimited processors and accounting for a 10 time unit computational latency;
(c) schedule for task graph in (a) using two processors and accounting for a 10 time unit

computational latency

Processor Assignment

The schedule produced in the previous section accounts for the computational latency.

However, it still assumes that there are an infinite number of processors on which to schedule

the computation. From the assumption of an unlimited number of processors, a schedule

can be obtained for a given CM that completes the work as quickly as possible. A bound on

the number of useful processors can then be obtained from that schedule, assuming every

computation is completed on a different processor. While a finite number of processors

now suffices, instantiation of so many processors (see Section 6.4) will likely exceed any

reasonable resource availability. Thus, we must consider the issues that arise from scheduling

a CM to execute on a number of processors that is relatively small compared to the maximum

101

number of processors that could be used. Thus, the next modification to the schedule

accounts for the limited number of processors, or PEs, available in the architecture. Starting

with the schedule produced in Figure 7.8(b), if the number of processors available is limited

to two processors, the schedule must be altered to reduce the number of computations

at time t = 0. All three computations represented by nodes N5, N4, and N3 cannot be

computed in the same time slot. Instead, one of those computations must be delayed and

scheduled at a later time. In the example shown in Figure 7.8(c), the computation for node

N3 is delayed one time unit and rescheduled at time t = 1. Node N3 is not dependent on

nodes N5 or N4, so it is not necessary to delay node N3 more than a single time unit. Node

N0, which is dependent on node N3, is unaffected by N3’s newly scheduled time because it is

scheduled for time t = 20 which is greater than tN3 + l where l is still 10 time units. Because

this adjustment is dependent on the actual number of PEs available, as the architecture is

scaled to include more PEs, new schedules will need to be generated.

In the above example, the computation for node N3 was arbitrarily chosen to be

delayed while nodes N5 and N4 remained scheduled at time t = 0. However, when scheduling

the DP matrix computations for aligning an RNA sequence to a CM, the choice of which

computations should be assigned to which PEs, and which computations should be delayed,

is based on a number of factors.

The first factor in determining the ordering and processor assignment of computa-

tions is based on how CM information, such as transition and emission probabilities for

each CM state, is stored by the processor array architecture. If all of the CM information

were to be stored in a single memory in the processor array architecture, then PEs could

not efficiently retrieve the probabilities required if computations for multiple different CM

states were scheduled in a single time slot. This is because different CM states require

different transition and emission probabilities and scheduling multiple different states in a

single time slot would result in memory contention. Instead, all computations for a partic-

ular CM state are assigned to the same PE regardless of where they occur in the schedule.

This allows the CM information to be divided among several smaller memories that are

local to each PE. Each PE stores only the portion of the CM information that is required

102

for the states that it is scheduled to process. This eliminates any contention that may have

occurred by storing CM information in a global memory used by all PEs. Computations

are assigned to a PE based on their CM state number, PE# = v % p, where v is the CM

state number to which the computation is a member, and p is the number of PEs available.

Other information about the computations is also used to determine the order in

which computations should be completed and which computations are delayed. As shown

in Figure 5.4, the DP parsing algorithm treats CMs as a tree structure and computes values

starting at the bottom of the tree and ending at the top of the tree. That is, the algorithm

computes values from state v = M − 1 down to v = 0. Computations in each time slot are

scheduled in a similar fashion, where those with higher state values are scheduled first. If

there are multiple computations with the same state value in a given time slot, then those

with the earliest schedulable time are scheduled first. Note that the earliest schedulable time

may not be the actual time that a computation is scheduled due to the limited hardware

resources. As an example, refer back to Figures 7.8(b) and (c) where the earliest schedulable

time for node N3 was t = 0, but the actual time the node was scheduled was t = 1.

Eliminating Memory Contention

The last consideration when developing a schedule for the processor array architecture

is memory contention. As described in Section 7.3.2, no two computations can access the

same memory interfaces in any given time slot of the schedule. To prevent memory conflicts,

computations are first assigned to processors as described in the previous sections. Then,

for each instruction in a time slot, unique memory addresses are provided from which to

read previous results in the alignment computation. Each address assigned is bounded to

the region of memory that is associated with the computation that produced the result.

This, in turn, assigns write locations to the computations that generated the results.

In general, more than one computation in the alignment may require the same result

from a previous computation. When scheduled in different time slots, there is no conflict

since each of the computations can access the result from memory uncontested during its

time slot. However, in some circumstance two computations may require the same result

103

N0
d = 0

N2
d = 1

N3
d = 1

N4
d = 2

N5
d = 2

N1
d = 1

(a)

Schedule:

t = 0: N5, N4
t = 1: N3
t = 10: N2, N1
t = 20: N0

(b)

Schedule:

t = 0: N5, N4
t = 1: N3
t = 10: N2
t = 11: N1
t = 21: N0

(c)

Figure 7.9: (a) An example task graph with distance labels; (b) schedule for task graph as
shown in Figure 7.8, but with a memory conflict at time t = 10; (c) schedule for task

graph with memory conflict resolved. Note that N1 was moved to t = 11 and its
dependent N0 was moved to tN0 = tN1 + l = 21.

in the same time slot. When this occurs, one of the computations needs to be moved to a

different time slot. The example shown in Figure 7.9(b) illustrates a schedule with a time

conflict at time t = 10 where both node N2 and N1 need the result of node N4. Because

both computations cannot access the same memory in the same time slot, node N1 is moved

to the next time slot t = 11. While this technique may not produce an optimal scheduling

of the computations, it is likely that an optimal approach is NP-complete.

7.6 Architecture Analysis

This section provides an analysis of the processor array architecture and the proposed

scheduled technique. From more than 600 CMs in the Rfam database, four were selected to

illustrate the behavior of the processor array architecture and the scheduler. The four CMs

chosen are of average size with varying numbers of bifurcation states. The characteristics

of the four models (RF00001, RF00016, RF00034, RF00041) are shown in Table B.1 of

Appendix B. The complete results for the analysis done in this section are located in

Appendix D.

104

7.6.1 Running Time

The first thing to consider when analyzing the effectiveness of the scheduler is the run-

ning time, or the length of the schedule required to produce results. The schedules for the

processor array architecture are developed for a single window W of the DP computation.

The schedule length, in clock cycles, for a single window of four different CMs is shown

in Figure 7.10. As should be expected, as the number of processors in the processor array

increases, the length of the schedule decreases. This is because the total number of compu-

tations in the DP matrix stays the same regardless of the number of processors. However,

with more processors available, more computations can be done in parallel which decreases

the time required for the computation. The most dramatic decreases in schedule length

occur between one and sixteen processors. The number of bifurcation states in a model

does not appear to have an affect on the decreasing schedule length.

1.E+04

1.E+05

1.E+06

1.E+07

1 10 100 1000

Number of Processors

S
ch

ed
u

le
 L

en
g

th
 (

C
yc

le
s)

RF00001 RF00016 RF00034 RF00041

2 4 8 16 32 64 128 256
1.E+04

1.E+05

1.E+06

1.E+07

1 10 100 1000

Number of Processors

S
ch

ed
u

le
 L

en
g

th
 (

C
yc

le
s)

RF00001 RF00016 RF00034 RF00041

2 4 8 16 32 64 128 256

Figure 7.10: The length of the scheduled computation decreases as the number of
processors available for the computation increases (shown on a log-log scale).

105

7.6.2 Scheduling Efficiency

Section 7.6.1 illustrated that as the number of processors in the processor array increases,

the length of the scheduled computation decreases. Although adding more processors con-

sistently decreases the schedule length, it is far from linear. As more processors are added,

there are diminishing decreases in the schedule length. This can be illustrated as the speedup

and efficiency of a schedule as more processors are added. The speedup is a measure of how

much faster a computation can be done with p processors than with a single processor. The

speedup is measured as ScheduleLength1 proc

ScheduleLengthp procs
. The efficiency of the schedule is a measure of

how much idle time must be inserted into the schedule to ensure no conflicts during the

computation. This is measured as NumComputations
TotalCycles where NumCompuations is the num-

ber of computations that need to completed for a single window of the specified CM and

TotalCycles is the total number of clock cycles, among all processors, that are required to

compute the results, including any idle time in the schedule.

Figure 7.11 illustrates both the speedup and the schedule efficiency of the four exam-

ple CMs. As additional processors are added to the processor array the speedup increases.

However, there are diminishing returns as the schedule is divided over more processors. This

is especially true for models RF00001, RF00034, and RF00041, which have 1, 3, and 2 bifur-

cations states respectively. CM RF00016 has no bifurcation nodes and shows much greater

speedup with the addition of more processors. This behavior is likely due to the combi-

nation of the way computations are assigned to processors (PE# = v % p) and the fact

that bifurcation states require a much larger number of computations than non-bifurcation

states. These two factors result in a much larger number of computations, those for the

bifurcation states, being assigned a single processor. This, in turn, could result in a large

number of idle slots being inserted into the schedules for each of the other processors to

ensure that all schedules remain synchronized. However, it was noted in Section 7.5.2 that

computations are assigned to processors in such a way so as to eliminate the need to un-

necessarily duplicate CM transition and emission probabilities. Because bifurcation states

do not require probabilities other than those from its children states, it may be possible

to evenly distribute bifurcation computations over all available processors in the processor

106

0

20

40

60

80

100

120

140

0 50 100 150 200 250

Number of Processors

S
p

ee
d

u
p

 O
ve

r
S

in
g

le
 P

ro
ce

ss
o

r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
ch

ed
u

le
 E

ff
ic

ie
n

cy
 (

%
)

RF00001 RF00016 RF00034 RF00041

RF00041RF00001 RF00016 RF00034

(speedup)

(efficiency)

0

20

40

60

80

100

120

140

0 50 100 150 200 250

Number of Processors

S
p

ee
d

u
p

 O
ve

r
S

in
g

le
 P

ro
ce

ss
o

r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
ch

ed
u

le
 E

ff
ic

ie
n

cy
 (

%
)

RF00001 RF00016 RF00034 RF00041

RF00041RF00041RF00001RF00001 RF00016RF00016 RF00034RF00034

(speedup)

(efficiency)

Figure 7.11: The speedup shows the diminishing returns as more processors are added to
the processors array. The efficiency decreases as more processors are added to the
processors array, indicating that more idle time is inserted into the schedule as the

number of processors increases.

array. This could allow CMs with bifurcations nodes to achieve speedup similar to that of

CMs without bifurcation nodes.

7.6.3 Memory Requirements

One of the main challenges in considering an architecture to accelerate the RNA alignment

computations was determining how to handle the memory requirements of the computa-

tions. This section provides an analysis on the memory requirements and behaviors for the

processor array architecture and the scheduler.

Live Memory Requirements

Figure 7.12 illustrates the maximum amount of live memory required for a schedule as the

number of processors increases. The live memory is the number of DP matrix cells that need

107

0

20,000

40,000

60,000

80,000

100,000

120,000

0 50 100 150 200 250

Number of Processors

M
ax

 L
iv

e
M

em
o

ry
 (

C
el

ls
)

RF00001 RF00016 RF00034 RF00041

0

20,000

40,000

60,000

80,000

100,000

120,000

0 50 100 150 200 250

Number of Processors

M
ax

 L
iv

e
M

em
o

ry
 (

C
el

ls
)

RF00001 RF00016 RF00034 RF00041

Figure 7.12: The maximum amount of live memory remains fairly consistent regardless of
the number of processors.

to be stored throughout the computation because another computation is still dependent on

the value from that cell. Once a stored value no longer has any dependencies, its memory

location can be reclaimed.

Increasing the number of processors has very little affect on the maximum amount

of live memory required throughout an alignment computation. This means that the total

memory required for processor array architecture is independent of the number of processors

in the array.

Average Memory/Processor

Figure 7.12 illustrates the maximum amount of live memory required for a computation

for the complete array of processors. However, as discussed in Section 7.3 each processor

in the processor array architecture has its own memory in the shared memory structure to

which it can write data. Figure 7.13 illustrates the average memory required per processor

108

0

20,000

40,000

60,000

80,000

100,000

120,000

0 5 10 15 20 25 30

Number of Processors

A
ve

ra
g

e
M

em
o

ry
/P

ro
ce

ss
o

r
(C

el
ls

)

RF00001 RF00016 RF00034 RF00041

0

20,000

40,000

60,000

80,000

100,000

120,000

0 5 10 15 20 25 30

Number of Processors

A
ve

ra
g

e
M

em
o

ry
/P

ro
ce

ss
o

r
(C

el
ls

)

RF00001 RF00016 RF00034 RF00041

Figure 7.13: As the number of processors in the processor array architecture increases, the
average memory required per processor decreases.

as the number of processors increases. When using a single processor, all of the memory

required must be associated with that one processor. This can be verified by noting that

the average memory required for a single processor, as shown in Figure 7.13, is equivalent

to the maximum live memory required for a single processor in Figure 7.12.

Figure 7.12 also shows that as the number of processors in the processor array

increases, and hence the total number of individual memories, the amount of memory

required for each processor decreases. This is because the total number of DP matrix cells

that need to be stored does not vary much as the number of processors increases, thus the

same number of cells are being stored over a larger number of memories. The decrease in

efficiency shown in Figure 7.11 does not affect the number of cells that need to be stored

throughout the computation.

109

Memory Traces

To understand the behavior of the memory usage throughout an RNA alignment computa-

tion, several computations were simulated for two different CMs from the Rfam database.

Memory traces were created for the duration of the simulated computation to monitor the

required memory throughout the computation. The models chosen to illustrate memory us-

age were RF00016 and RF00034, which have 0 and 3 bifurcation states respectively. Each

of the models were run three times each to simulate 16, 32, and 64 processor configurations.

The memory traces for CM RF00016 are shown in Figure 7.14. The memory traces for CM

RF00034 are shown in Figure 7.15.

The overall profile of each memory trace is a result of the structure of the CM.

Therefore, the memory traces for the two CMs have very distinct curves. However, compar-

ing the traces for the two CMs helps to reveal some commonalities in the behavior of the

memory usage. First, note that the profile of the memory traces remain fairly consistent

regardless of the number of processors. The time scale of the profile is simply compressed

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000

Li
ve

 M
em

or
y

(C
el

ls
)

Time Slot

16 procs
32 procs
64 procs

Figure 7.14: Memory trace for CM RF00016

110

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

 100,000

 0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000

Li
ve

 M
em

or
y

(C
el

ls
)

Time Slot

16 procs
32 procs
64 procs

Figure 7.15: Memory trace for CM RF00034

or expanded depending on whether there are more or fewer processors. Also note that the

peak of each profile (i.e. the maximum live memory) is approximately equivalent regardless

of the number of processors. This means that the total memory required for the processor

array architecture is independent of the number of processors in the array. This was also

shown earlier in Figure 7.12.

7.6.4 Scalability of Architecture

This section provides an analysis on the scalability of the processor array architecture. It

includes a discussion on the logic requirements and the I/O requirements.

Logic Requirements

To determine the logic requirements for different sized processor array architectures, the

main components were scaled according to the number of processors in the array. For the

processing elements discussed in Section 7.2, this entailed finding the resource requirements

111

for a single processing element and then multiplying those requirements by the number

of processors desired. For the shared memory structure, scaling the resource requirements

entailed not only increasing the number of ports on the switching fabrics, but also increasing

the width of each port. The increased width of each port is due to the additional bits

required to address the larger number of ports. Note that the number of processors chosen

was determined by the number of ports available on the switches of the shared memory

structure. The switches scale as a power of two and the number of processors was chosen

to use as many of those ports as possible. The number of processors chosen is simply⌊
NumSwitchPorts

6

⌋
. The results of the scalability analysis can be seen in Table 7.1.

In terms of the individual memories required, if each processor in the processor

array architecture is given six memories as described in Section 7.3, then the total number

of individual memories required is 6p where p is the number of processors. One of the

largest FPGAs available today, the Xilinx Virtex-5, contains over 600 1024x18bit block

RAMs, allowing for a total of over 600,000 18-bit memory locations (or 300,000 21-bit

memory locations if using the numeric representation discussed in Section 5.5). As shown

in Section 7.6.3, and further illustrated in Appendix D, the live memory requirements (i.e.

the number of memory locations required) rarely exceeds 100,000 entries for the CMs tested.

Furthermore, as the number of processors is increased, the average memory required per

processor decreases. Because the maximum amount of live memory stays fairly consistent

regardless of the number of processors (7.12), the average memory required per processor

has an almost perfect inverse relationship to the number of processors. That is, doubling the

number of processors reduces the average memory required per processor by half. However,

because the memory requirements differ for each CM, no general statement can be made

regarding the ability, or the inability, of a hardware device to handle all CMs. Each CM

must be considered individually with respect to the resources available. To determine if

a device can support a CM using a specified number of processors, the following must be

true: p×
⌈

AverageMemPerProc
6×NumEntriesPerBRAM

⌉
≤ NumBRAMsAvailable.

The logic requirements for the processor array architecture, in terms of both look-up

tables (LUTs) and the equivalent gate count, are shown in Table 7.1 and illustrated in

112

136642474547102852157166083535503208778121759847376215697451426Total Size

63014048252469729917324379973014185885070931692935324515303Batcher Switch (out)

858036448320245487142299909236524152045199197137Banyan Switch (out)

679019312657085210168566378210613683704694251491154427911937Batcher Switch(in)

913541472481254453142299873395985945319163355451Banyan Switch (in)

39549181971660985830487116243558115980579902319611598Processing Elements

Resource Requirements in Gates

10155559405024615887256143762323098705733720108973460Total Size

4747949 (47%)1899186 (47%)744706 (47%)285696 (47%)105914 (46%)37699 (43%)12735 (38%)3927 (36%)1130 (33%)Batcher Switch (out)

62453 (1%)32639 (1%)17874 (1%)10404 (2%)6620 (3%)4729 (5%)3767 (11%)1442 (13%)517 (15%)Banyan Switch (out)

5098195 (50%)1994099 (49%)762749 (48%)285696 (47%)102323 (44%)35005 (40%)11292 (33%)3286 (30%)889 (26%)Batcher Switch (in)

66913 (1%)34562 (1%)18515 (1%)10404 (2%)6364 (3%)4344 (5%)3286 (10%)1186 (11%)396 (11%)Banyan Switch (in)

180048 (2%)89760 (2%)44880 (3%)22176 (4%)11088 (5%)5280 (6%)2640 (8%)1056 (10%)528 (15%)Processing Elements

Resource Requirements in LUTs

292827262524232221Out Switch Port Size

323028262422201816In Switch Port Size

11109876543Port Address Bits

204810245122561286432168Switch Ports

204610205102521266030126Num Memories

34117085422110521Num Procs

Processor Array Configuration

136642474547102852157166083535503208778121759847376215697451426Total Size

63014048252469729917324379973014185885070931692935324515303Batcher Switch (out)

858036448320245487142299909236524152045199197137Banyan Switch (out)

679019312657085210168566378210613683704694251491154427911937Batcher Switch(in)

913541472481254453142299873395985945319163355451Banyan Switch (in)

39549181971660985830487116243558115980579902319611598Processing Elements

Resource Requirements in Gates

10155559405024615887256143762323098705733720108973460Total Size

4747949 (47%)1899186 (47%)744706 (47%)285696 (47%)105914 (46%)37699 (43%)12735 (38%)3927 (36%)1130 (33%)Batcher Switch (out)

62453 (1%)32639 (1%)17874 (1%)10404 (2%)6620 (3%)4729 (5%)3767 (11%)1442 (13%)517 (15%)Banyan Switch (out)

5098195 (50%)1994099 (49%)762749 (48%)285696 (47%)102323 (44%)35005 (40%)11292 (33%)3286 (30%)889 (26%)Batcher Switch (in)

66913 (1%)34562 (1%)18515 (1%)10404 (2%)6364 (3%)4344 (5%)3286 (10%)1186 (11%)396 (11%)Banyan Switch (in)

180048 (2%)89760 (2%)44880 (3%)22176 (4%)11088 (5%)5280 (6%)2640 (8%)1056 (10%)528 (15%)Processing Elements

Resource Requirements in LUTs

292827262524232221Out Switch Port Size

323028262422201816In Switch Port Size

11109876543Port Address Bits

204810245122561286432168Switch Ports

204610205102521266030126Num Memories

34117085422110521Num Procs

Processor Array Configuration

Table 7.1: Configuration and resource requirements for different sized processor arrays.

Figures 7.16 and 7.17. While the resource requirements for the processing elements and the

Banyan switch scale linearly, the Batcher switch does not. Moreover, as shown in Figure 7.17

the logic requirements for the Batcher switch quickly dwarf the logic requirements for other

key components of the architecture. Note that the logic requirements for the Batcher switch

closely follow the total logic requirements of the complete architecture. When using a single

processor in the processor array, the Batcher switch accounts for almost 60% of the logic

resources. This quickly grows to about 90% of the total resources when using only 21

processors.

Given the rapid growth of the Batcher switch, the logic requirements quickly become

the limiting factor in terms of the number of processors that can be deployed on today’s

devices. Even though the Xilinx Virtex-5 has enough block RAMs to support up to 100

processors, with only 200K LUTs, the device is limited to fewer than 20 processors. How-

ever, with ASIC devices currently supporting over 1.5 billion transistors [66], 340 or more

processors on an ASIC is possible.

Section 7.3.2 presented the shared memory structure used in the processor array

architecture. The possibility of removing the Banyan switch from the shared memory

structure by inserting dummy memory reads was also discussed. However, upon looking at

113

120

20,120

40,120

60,120

80,120

100,120

120,120

1401,20

160,120

180,120

200,120

0 50 100 150 200 250 300 350

Number of Processors

N
u

m
b

er
 o

f
L

U
T

s

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

1.60E+08

N
u

m
b

er
 o

f
G

at
es

Processing Elements Banyan Switches

120

20,120

40,120

60,120

80,120

100,120

120,120

1401,20

160,120

180,120

200,120

0 50 100 150 200 250 300 350

Number of Processors

N
u

m
b

er
 o

f
L

U
T

s

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

1.60E+08

N
u

m
b

er
 o

f
G

at
es

Processing Elements Banyan Switches

Figure 7.16: Resource requirements for the processing elements and Banyan switches in
different sized processor arrays.

120

2,000,120

4,000,120

6,000,120

8,000,120

10,000,120

12,000,120

0 50 100 150 200 250 300 350

Number of Processors

N
u

m
b

er
 o

f
L

U
T

s

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

1.60E+08

N
u

m
b

er
 o

f
G

at
es

Total Processing Elements Banyan Switches Batcher Switches

120

2,000,120

4,000,120

6,000,120

8,000,120

10,000,120

12,000,120

0 50 100 150 200 250 300 350

Number of Processors

N
u

m
b

er
 o

f
L

U
T

s

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

1.60E+08

N
u

m
b

er
 o

f
G

at
es

Total Processing Elements Banyan Switches Batcher Switches

Figure 7.17: Resource requirements for different sized processor arrays. Note that the
Batcher switches account for the majority of the resources.

114

the results in Table 7.1 and the graphs in Figures 7.16 and 7.17, it is clear that the resources

required by the Banyan switches are insignificant when compared to the Batcher switches.

Based on the results presented in this section, eliminating the Batcher switches from the

shared memory structure should take precedence over eliminating the Banyan switches.

I/O Requirements

This section examines the I/O requirements of the processor array architecture. There are

three components to the I/O: the score output, the residue input, and the instruction input.

As described in Section 7.4, only a single processing element (PE0) outputs alignment

scores. Furthermore, scores are only output for state v = 0, meaning that the number of

potential scores that need to be output consists of only a small fraction of the overall

computation. Because only scores that exceed some predetermined threshold are output,

the number of scores output will generally be much less than the total number of scores

in state v = 0. For the CMs listed in Appendix B, the size of the output scores for a

single window W is typically less than a few hundred KBytes. This translates to an average

required output bandwidth of approximately 5 MBps for a single processor configuration

and approximately 400 MBps for a 256 processor configuration when running the processor

array architecture at 250 MHz.

The residue input consists of a single new residue for each window W of the computa-

tion. Because each residue can be represented with only a few bits of information, and each

window may contain millions of instructions, the residue input is insignificant when com-

pared to the instruction input. When running the processor array architecture at 250 MHz,

the bandwidth required for the residue input is on average less than 1 KByte for a single

processor configuration and approximately 5 KBytes for a 256 processor configuration.

The instruction input is the main component of the I/O and is the limiting factor for

processor array architecture. The instruction input consists of a stream of instructions for

each processor in the processor array that identifies the computations for each processor.

As the number of processors increases, the number of instructions that must be streamed to

115

14407.256927.53336.251585.5761.25347.5166.2563.530.25I/O Requirements (Gbps)

576292771013345634230451390665254121I/O Requirements (bits)

169163157151145139133127121Instruction Size

Instruction I/O Requirements @ 250 MHz

292827262524232221Out Switch Port Size

323028262422201816In Switch Port Size

11109876543Port Address Bits

204810245122561286432168Switch Ports

204610205102521266030126Num Memories

34117085422110521Num Procs

Processor Array Configuration

14407.256927.53336.251585.5761.25347.5166.2563.530.25I/O Requirements (Gbps)

576292771013345634230451390665254121I/O Requirements (bits)

169163157151145139133127121Instruction Size

Instruction I/O Requirements @ 250 MHz

292827262524232221Out Switch Port Size

323028262422201816In Switch Port Size

11109876543Port Address Bits

204810245122561286432168Switch Ports

204610205102521266030126Num Memories

34117085422110521Num Procs

Processor Array Configuration

Table 7.2: The instruction sizes and bandwidth required for streaming instructions to the
processor array architecture.

the processor array architecture also increases. Additionally, increasing the number of pro-

cessors also increases the size of each instruction that must be streamed to the architecture.

As described in Section 7.2.1, each instruction consists of up to six memory addresses from

which to read memory and a single memory address to which the result should be written.

As the number of processors increases, the number of address bits required to access each

of the individual memories in the shared memory structure also increases.

Table 7.2 shows the instruction sizes required for different configurations of the

processor array architecture. Also shown in Table 7.2 is the number of instruction bits

per clock cycle that must be provided to the processor array to fully utilize all of the

available processors. This value can be used to determine the required input bandwidth for

streaming instructions to the processor array architecture. The bandwidth requirements

shown in Table 7.2 are for a processor array architecture running at 250 MHz.

At first glance the bandwidth required for streaming instructions to the processor

array seem a bit daunting. However, the actual schedules tend to be only several hundreds of

MBytes in size. When divided over a couple of processors, the size of the schedule assigned

to each processor is typically around 50 MBytes. When using a large number of processors

in the processor array, the size of the schedule assigned to each processor can be less than

1 MByte. Furthermore, the same schedule is reused for each window of the computation.

Therefore, providing each processor in the processor array architecture with a small SRAM

116

or DRAM for schedule storage could provide the bandwidth necessary to keep all of the

processors in the processor array architecture busy.

7.6.5 Comparison to Software

To determine the effectiveness of the processor array architecture, this section compares

its estimated runtime to that of the Infernal software package. While some results are

presented in this section, additional results can be found in Appendix E.

The evaluation system for the Infernal software contains dual Intel Xeon 2.8 GHz

CPUs and 6 GBytes of DDR2 SDRAM running Linux CentOS 5.0. Infernal was run with

the –toponly and –noalign options to ensure that Infernal was not doing more work than

the processor array architecture. Results were collected for both the standard version of

Infernal as well as Infernal using the Query Dependent Banding (QDB) heuristic [53].

The runtime represents the time it took, in seconds, for Infernal to process a randomly

generated database of 1 million residues. The database search algorithm that is executed by

Infernal is equivalent to the algorithm presented in Section 5.3.3 which does not require

a traceback algorithm. Since no traceback is required, the contents of the residue database

have no affect on the runtime.

The results for the processor array architecture are an estimate based on several

factors including: the number of computations required to process a database of 1 million

residues, the efficiency of the schedule, the number of processors available, and the clock

frequency of the processor array. For the estimates in this section, a clock frequency of 250

MHz was used.

Table 7.3 shows the results for four different CMs using 16, 32, and 64 processors.

In the table, Total Computations represents the total number of computations required

to compute the results for a database of 1 million residues. This value includes all of

the computations, including the expanded computations required for scheduling the DP

matrix cells from bifurcation states. The efficiency value was determined in Section 7.6.2

for a single window of the alignment computation. The total number of cycles required for

processing 1 million residues, including idle time, is estimated as TotalComputations
Efficiency . Because

117

those cycles are divided evenly across p processors, the actual length of the schedule is
TotalCycles

p . The time to process the schedule varies with the frequency at which the processor

array architecture can process the schedule. For the comparison presented in this section,

the frequency of the processor array architecture is assumed to be 250 MHz. The times

listed in Table 7.3 for the processor array architecture are computed as ScheduleLength
250MHz . For

comparison the table lists the time required for both the standard Infernal software

package and the Infernal software package when using the QDB heuristic. The speedup

represents the speedup of the processor array architecture over the Infernal software

package.

Figure 7.18 illustrates the estimated time to align 1 million residues to a CM when

using between 1 and 256 processors in the processor array. Results for four different CMs

are shown. The shortest bars represent the time required when using 256 processors. The

longest bar represents the time required when using a single processor. The bars in between

represent the time required when using 128, 64, 32, 16, 8, 4, and 2 processors.

Figure 7.19 compares the estimated time for the processor array architecture to the

time for the Infernal software package. The bars showing the results for the processor

array architecture are the same as those shown in Figure 7.18 but on an expanded time

16 Processors

102.51335.241186.923881.5611.58289461618918525543606632.0559389512497RF00041

70.36253.12875.203148.3612.44310952940419900988184525.1750108566254RF00034

401.38715.371885.213360.004.7011742134957514966366482.6662121487523RF00016

145.15394.961284.433494.928.85221220369714158103660836.8552178338429RF00001

64 Processors

78.51256.751186.923881.5615.12377953555112094513762949.159389512497RF00041

57.18205.71875.203148.3615.30382624189112243974050440.9250108566254RF00034

222.02395.701885.213360.008.4921228118886792998042191.4462121487523RF00016

105.85288.031284.433494.9212.1330334695419707102531653.7552178338429RF00001

32 Processors

53.32174.361186.923881.5622.2655655253008904840479566.6959389512497RF00041

37.10133.44875.203148.3623.5958983268599437322973953.0950108566254RF00034

116.22207.141885.213360.0016.2240552606816488417088995.7462121487523RF00016

70.31191.311284.433494.9218.2745670022957307203671471.452178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
LengthTotal CyclesEfficiency

Total
ComputationsCM

16 Processors

102.51335.241186.923881.5611.58289461618918525543606632.0559389512497RF00041

70.36253.12875.203148.3612.44310952940419900988184525.1750108566254RF00034

401.38715.371885.213360.004.7011742134957514966366482.6662121487523RF00016

145.15394.961284.433494.928.85221220369714158103660836.8552178338429RF00001

64 Processors

78.51256.751186.923881.5615.12377953555112094513762949.159389512497RF00041

57.18205.71875.203148.3615.30382624189112243974050440.9250108566254RF00034

222.02395.701885.213360.008.4921228118886792998042191.4462121487523RF00016

105.85288.031284.433494.9212.1330334695419707102531653.7552178338429RF00001

32 Processors

53.32174.361186.923881.5622.2655655253008904840479566.6959389512497RF00041

37.10133.44875.203148.3623.5958983268599437322973953.0950108566254RF00034

116.22207.141885.213360.0016.2240552606816488417088995.7462121487523RF00016

70.31191.311284.433494.9218.2745670022957307203671471.452178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
LengthTotal CyclesEfficiency

Total
ComputationsCM

Table 7.3: Estimated runtime and speedup of processor array architecture over Infernal
software package. Estimate is based on a processor array running at 250 MHz. Additional

results are in Appendix E.

118

scale. The bars showing the results of the Infernal software package contain the results

for both the standard Infernal software and the Infernal software when using the QDB

heuristic. The shorter bar represents the results when using the QDB heuristic. The longer

bar represents the results when using the standard Infernal software.

0 50 100 150 200 250

RF00041 - ProcArray

RF00034 - ProcArray

RF00016 - ProcArray

RF00001 - ProcArray

Time (seconds)

0 50 100 150 200 250

RF00041 - ProcArray

RF00034 - ProcArray

RF00016 - ProcArray

RF00001 - ProcArray

Time (seconds)

Figure 7.18: The estimated time to align a 1 million residue database to four different
CMs using varying numbers of processors. The shortest bar represents the time to

compute the results using 256 processors. The longest bar represents the time to compute
the results using a single processor.

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00

RF00041 - Infernal

RF00041 - ProcArray

RF00034 - Infernal

RF00034 - ProcArray

RF00016 - Infernal

RF00016 - ProcArray

RF00001 - Infernal

RF00001 - ProcArray

Time (seconds)

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00

RF00041 - Infernal

RF00041 - ProcArray

RF00034 - Infernal

RF00034 - ProcArray

RF00016 - Infernal

RF00016 - ProcArray

RF00001 - Infernal

RF00001 - ProcArray

Time (seconds)

Figure 7.19: A comparison of the estimated time to align a 1 million residue database
using the processor array architecture versus the time required for Infernal. The shorter
bar in the Infernal categories represents the time when using the QDB heuristic. The

longer bar represents the time without QDB.

119

Based on the results in this section, as well as the additional results in Appendix E,

when running at 250 MHz the processor array architecture can achieve an estimated speedup

of 11× to 18× over the standard Infernal software package. With 64 processors, the

processor array architecture can achieve an estimated speedup of 250× to 970×. If provided

enough hardware resource to employ 256 processors, the processor array architecture can

achieve up to an estimated 2, 350× over the Infernal software package.

7.7 Chapter Summary

This chapter described a second architecture for performing RNA secondary structure align-

ments on a residue database. The architecture presented in this chapter utilizes an array

of processing elements and a multi-port shared memory structure to share data between

processors. Additionally, a scheduling algorithm was presented that takes as input a co-

variance model and outputs a schedule for the processor array architecture. The scheduling

algorithm accounts for all processor and memory conflicts thereby eliminating the need for

buffering and/or conflict resolution in hardware.

An analysis of the processor array architecture and the schedule was also presented.

As should be expected, the time required to perform an alignment computation decreases as

the number of processors in the processor array increases. The memory required to process

a sequence with a specified CM stays almost constant as the number of processors in the

array is increased.

Additionally, the scalability of the architecture was examined. The hardware re-

sources for many of the key components in the architecture scale linearly. However, the

Batcher switch in the shared memory structure does not, and quickly becomes the limiting

component of the architecture.

Finally, the processor array architecture was compared to the Infernal software

package. The speedup achievable by the processor array was estimated based on the schedule

length for an alignment. The estimated speedup for the processor array architecture over

the Infernal software package ranged from under 20× to over 2, 350×.

120

Chapter 8

Summary and Future Work

8.1 Dissertation Summary

The work described in this dissertation focused on the design of high-speed architectures

for different parsing problems. Due to the wide variety of applications that require parsing,

and the numerous parsing algorithms that have been developed, it is unlikely that any

single architecture could suffice for all parsing problems. Therefore, this work focused on

two areas that are most likely to benefit from accelerated parsing techniques.

In the area of network applications, this work introduced high-speed architectures for

pattern matching as well as parsing for large grammars that define regular languages. In the

area of bioinformatics, this work introduced two high-speed architectures for accelerating

the computationally complex parsing algorithms used for RNA alignment.

8.2 Future Work

The work presented in this dissertation, particularly the work in Chapter 7, has many

aspects that can be extended beyond what is presented in this dissertation. Below is a

summary of optimizations and changes that can be made to the processor array architecture

discussed in Section 7.1 and to the scheduling techniques discussed in Section 7.5.

121

• The scheduling algorithm presented in Section 7.5 creates a schedule for a single win-

dow W of the RNA alignment computation. That same schedule can then be reused

for each subsequent window of the alignment computation. However, this approach

does not take advantage of one very important aspect of the dynamic programming

(DP) alignment algorithm discussed in Section 5.3.3: a high percentage of the com-

putations required for any given window in the alignment computation have already

been computed in a previous window. By reusing the same schedule for each window,

a large portion of the computations are being computed up to W times.

To eliminate the need to recompute data, a dual-schedule scheme may be appropriate.

In the proposed dual-scheduled scheme, one schedule can be developed to compute the

first W rows of the DP computation (rows 0 through W − 1), and a second schedule

can be developed to compute one or more rows beyond the first schedule, starting at

row W . The first W rows in the DP matrix are not the complete width of the matrix,

making them different from the remainder of the rows in the matrix. All rows ≥W are

the same width (i.e. W + 1) and can be scheduled similarly. During computation, the

first schedule is used only once, whereas the second schedule is repeated as many times

as necessary to process the entire input. The second schedule for the computation

can be developed for a single row and repeated L−W + 1 times, or for multiple rows

and repeated L−W+1
R times, where L is the length of the input sequence and R is the

number of full rows scheduled in the second schedule.

• The RNA alignment algorithm has steep memory requirements, whether it is realized

in software or in hardware. The scheduling algorithm presented in Section 7.5 does

not make any attempt to minimize the memory requirements for the computation.

With further analysis it may be possible to discover optimizations that can be made to

the scheduling algorithm which can help reduce the amount of live memory required

throughout the computation. Making the best use of available memory resources on

any given platform may enable the use of additional processing modules.

• The instruction format described in Section 7.2.1 requires a large number of bits for

each instruction in the schedule. This increases the input bandwidth required to keep

122

all of the processors in the processor array architecture busy. Future implementations

may be able to reduce the size of each instruction, and thus the required input band-

width, by taking advantage of the structure of covariance models (CMs). For example,

the state type and location of a cell in the DP matrix is used to determine the loca-

tion of its dependencies. It may be possible to extend this method of addressing the

three-dimensional DP matrix into the processor array architecture’s shared memory

structure while still keeping the memory requirements low. This would eliminate of all

of the read addresses from the instruction format presented in Section 7.2.1. Another

possible method for reducing the size of an instruction includes using variable-length

instructions as mentioned in Section 7.2.1.

• The processor array architecture and scheduler presented in Chapter 7 were cus-

tomized specifically for the RNA alignment algorithm discussed in Section 5.3.3. How-

ever, throughout the development of both the architecture and the scheduler many

opportunities to generalize the approach presented themselves.

Future realizations of the processor array architecture may be generalizable to accel-

erate any DP computation, not just the RNA alignment discussed in this work. One

vision of such an approach would start with the recurrence relation for the DP compu-

tation. From the specified recurrence relation, information regarding the computation

required for each step of the recurrence, the number of concurrent memory reads re-

quired for each computation, and the relationships between each computation could

be extracted. This information could then be used to generate the necessary hardware

and memory required for the processor array. Additionally, the relationships speci-

fied by the recurrence could be used to generate a directed task graph which could

subsequently be scheduled onto the generated processor array.

Generalizing the processor array architecture as described above would result in a

very powerful architecture useful for many different applications. DP algorithms are

used extensively throughout the field of bioinformatics, and such an approach would

create a single high-speed solution that could benefit many researchers in the field of

bioinformatics.

123

Appendix A

Email Grammar in Lex/Yacc Style

Format

This appendix contains the complete Lex/Yacc style grammar used to generate the ALPS

email processor described in Section 4.3 of this work.

%%

start: message;

ALPHA: x41.5A | x61.7A | A.Z | a.z;

CR: x0D;

LF: x0A;

DIGIT: x30.39;

DQUOTE: x22;

HTAB: x09;

SP: x20;

NO-WS-CTL: d1.8 | d11 | d12x | d14.31 | d127;

txt: d1.9 | d11 | d12x | d14.127;

CRLF: CR LF;

WSP: SP | HTAB;

LWSP: WSP LWSP | CRLF WSP LWSP | ;

FWS: FWS1 FWS3;

FWS1: FWS2 CRLF | ;

FWS2: WSP FWS2 | ;

FWS3: WSP FWS2;

FWSopt: FWS | ;

CFWS: CFWS1 CFWS2;

CFWS1: FWSopt comment CFWS | ;

CFWS2: FWSopt comment | FWS;

CFWSopt: CFWS | ;

124

quoted-pair: "\" txt;

ctext: NO-WS-CTL | d33.39 | d42.91 | d93.126;

ccontent: ctext | quoted-pair | comment;

comment: "(" comment1 ")";

comment1: comment2 FWSopt;

comment2: FWSopt ccontent comment2 | ;

atext: ALPHA | DIGIT | "!" | "#" | "$" | "%" | "amp" | "’"

| "*" | "+" | "-" | "/" | "=" | "?" | "^" | "_"

| "‘" | "{" | "staff" | "}" | "~";

atom: CFWSopt atext1 CFWSopt;

atext1: atext atext1b;

atext1b: atext atext1b | ;

dot-atom: CFWSopt dot-atom-text CFWSopt;

dot-atom-text: atext1 dot-atom-text1;

dot-atom-text1: "." atext1 dot-atom-text1 | ;

qtext: NO-WS-CTL | d33 | d35.91 | d93.126;

qcontent: qtext | quoted-pair;

quoted-string: CFWSopt DQUOTE quoted-string1 FWSopt DQUOTE CFWSopt;

quoted-string1: FWSopt qcontent quoted-string1 | ;

word: atom | quoted-string;

phrase: word1;

word1: word word1b;

word1b: word word1b | ;

utext: NO-WS-CTL | d33.126;

unstructured: unstructured1 FWSopt;

unstructured1: FWSopt utext unstructured1 | ;

date-time: date-time1 date FWS time CFWSopt;

date-time1: day-of-week "," | ;

day-of-week: FWSopt day-name;

day-name: "Mon" | "Tue" | "Wed" | "Thu" | "Fri" | "Sat" | "Sun";

date: day month year;

year: DIGIT DIGIT DIGIT DIGIT year1;

year1: DIGIT year1 | ;

month: FWS month-name FWS;

month-name: "Jan" | "Feb" | "Mar" | "Apr" | "May" | "Jun"

| "Jul" | "Aug" | "Sep" | "Oct" | "Nov" | "Dec";

day: FWSopt DIGIT day1;

day1: DIGIT | ;

time: time-of-day FWS zone;

time-of-day: hour ":" minute time-of-day1;

time-of-day1: ":" second | ;

minute: DIGIT DIGIT;

second: DIGIT DIGIT;

hour: DIGIT DIGIT;

zone: zone1 zone2;

zone1: "+" | "-";

zone2: DIGIT DIGIT DIGIT DIGIT;

address: mailbox | group;

mailbox: name-addr | addr-spec;

125

name-addr: name-addr1 angle-addr;

name-addr1: display-name | ;

angle-addr: CFWSopt "<" addr-spec ">" CFWSopt;

group: display-name ":" group1 ";" CFWSopt;

group1: mailbox-list | CFWS | ;

display-name: phrase;

mailbox-list: mailbox mailbox-list1;

mailbox-list1: "," mailbox mailbox-list1 | ;

address-list: address address-list1;

address-list1: "," address address-list1 | ;

addr-spec: local-part "@" domain;

local-part: dot-atom | quoted-string;

domain: dot-atom | domain-literal;

domain-literal: CFWSopt "[" domain-lit1 FWSopt "]" CFWSopt;

domain-lit1: FWSopt dcontent domain-lit1 | ;

dcontent: dtext | quoted-pair;

dtext: NO-WS-CTL | d33.90 | d94.126;

message: fields message1;

message1: CRLF body | CRLF multipart-body | ;

body: body1 text1;

body1: text1 CRLF | ;

text1: txt text1 | ;

fields: fields1 fields4;

fields1: trace fields2 fields1 | ;

fields2: fields3 fields2 | ;

fields3: resent-date | resent-from | resent-sender | resent-to

| resent-cc | resent-bcc | resent-msg-id;

fields4: fields5 fields4 | ;

fields5: orig-date | from | sender | reply-to | to | cc | bcc

| message-id | in-reply-to | references | subject

| comments | keywords | MIME-message-headers | optional-field;

orig-date: "Date:" date-time CRLF;

from: "From:" mailbox-list CRLF;

sender: "Sender:" mailbox CRLF;

reply-to: "Reply-To:" address-list CRLF;

to: "To:" address-list CRLF;

cc: "Cc:" address-list CRLF;

bcc: "Bcc:" bcc1 CRLF;

bcc1: address-list | CFWSopt;

message-id: "Message-ID:" msg-id CRLF;

in-reply-to: "In-Reply-To:" msg-id1 CRLF;

msg-id1: msg-id msg-id1b;

msg-id1b: msg-id msg-id1b | ;

references: "References:" msg-id1 CRLF;

msg-id: CFWSopt "<" id-left "@" id-right ">" CFWSopt;

id-left: dot-atom-text | no-fold-quote;

id-right: dot-atom-text | no-fold-lit;

no-fold-quote: DQUOTE no-fold-quote1 DQUOTE;

no-fold-quote1: no-fold-quote2 no-fold-quote1 | ;

no-fold-quote2: qtext | quoted-pair;

126

no-fold-lit: "[" no-fold-lit1 "]";

no-fold-lit1: no-fold-lit2 no-fold-lit1 | ;

no-fold-lit2: dtext | quoted-pair;

subject: "Subject:" unstructured CRLF;

comments: "Comments:" unstructured CRLF;

keywords: "Keywords:" phrase keywords1 CRLF;

keywords1: "," phrase keywords1 | ;

resent-date: "Resent-Date:" date-time CRLF;

resent-from: "Resent-From:" mailbox-list CRLF;

resent-sender: "Resent-Sender:" mailbox CRLF;

resent-to: "Resent-To:" address-list CRLF;

resent-cc: "Resent-Cc:" address-list CRLF;

resent-bcc: "Resent-Bcc:" resent-bcc1 CRLF;

resent-bcc1: address-list | CFWSopt;

resent-msg-id: "Resent-Message-ID:" msg-id CRLF;

trace: returnopt trace1;

trace1: received trace1b;

trace1b: received trace1b | ;

returnopt: return | ;

return: "Return-Path:" path CRLF;

path: CFWSopt "<" path1 ">" CFWSopt;

path1: CFWSopt | addr-spec;

received: "Received:" name-val-list CRLF ";" date-time CRLF;

name-val-list: CFWSopt name-val-list1;

name-val-list1: name-val-pair name-val-list2 | ;

name-val-list2: CFWS name-val-pair name-val-list2 | ;

name-val-pair: item-name CFWS item-value;

item-name: ALPHA item-name1;

item-name1: item-name2 item-name1 | ;

item-name2: item-name3 item-name4;

item-name3: "-" | ;

item-name4: ALPHA | DIGIT;

item-value: angle-addr1 | addr-spec | atom | domain | msg-id;

angle-addr1: angle-addr angle-addr1b;

angle-addr1b: angle-addr angle-addr1b | ;

optional-field: field-name ":" unstructured CRLF;

field-name: ftext1;

ftext1: ftext ftext1b;

ftext1b: ftext ftext1b | ;

ftext: d33.57 | %d59.126;

attribute: token;

composite-type: "message" | "multipart" | extension-token;

content: "Content-Type" ":" type "/" subtype content1;

content1: ";" parameter content1 | ;

description: "Content-Description" ":" text0;

text0: txt text0 | ;

discrete-type: "text" | "image" | "audio" | "video" | "application"

| extension-token;

encoding: "Content-Transfer-Encoding" ":" mechanism;

127

entity-headers: entity_h1 entity_h2 entity_h3 entity_h4;

entity_h1: content CRLF | ;

entity_h2: encoding CRLF | ;

entity_h3: id CRLF | ;

entity_h4: description CRLF | ;

extension-token: x-token;

id: "Content-ID" ":" msg-id;

mechanism: "7bit" | "8bit" | "binary" | "quoted-printable"

| "base64" | x-token;

MIME-message-headers: entity-headers fields version CRLF;

parameter: attribute "=" value;

subtype: extension-token;

token: text1;

transport-padding: LWSP transport-padding | ;

type: discrete-type | composite-type;

value: token | quoted-string;

version: "MIME-Version" ":" DIGIT1 "." DIGIT1;

DIGIT1: DIGIT DIG1b;

DIG1b: DIGIT DIG1b | ;

x-token: x-token1 token;

x-token1: "X-" | "x-";

boundary: boundary1 bcharsnospace;

boundary1: bchars boundary1 | ;

bchars: bcharsnospace | " ";

bcharsnospace: DIGIT | ALPHA | "’" | "(" | ")" | "+" | "_" | ","

| "-" | "." | "/" | ":" | "=" | "?";

body-part: message;

close-delimiter: delimiter "--";

dash-boundary: "--" boundary;

delimiter: CRLF dash-boundary;

discard-text: text0 CRLF discard-text | ;

encapsulation: delimiter transport-padding CRLF body-part;

epilogue: discard-text;

multipart-body: mpart-body1 dash-boundary transport-padding CRLF body-part mpart-body2

close-delimiter transport-padding mpart-body3;

mpart-body1: preamble CRLF | ;

mpart-body2: encapsulation mpart-body2 | ;

mpart-body3: CRLF epilogue | ;

preamble: discard-text;

%%

128

Appendix B

Covariance Model Data

This appendix contains a listing of the covariance models (CMs) that were used for the

analyses performed in Chapters 6 and 7 along with their characteristics. All of the models

listed are from the Rfam 8.0 database [33]. Additional results from the analysis on the base-

line architecture are in Appendix C. Additional results from the analysis on the processor

array architecture are in Appendix D.

129

10002573113619964RF00070

10000684113023274RF00069

10003844111328993RF00068

1000324918413938RF00066

10007517181145388112RF00065

1000441917111429582RF00063

10003755201151400114RF00060

2111104813110326177RF00057

21111343391153411101RF00056

10000755117225982RF00055

10001775110626885RF00054

100082428110726862RF00053

10006222219022052RF00052

1000102225110025059RF00051

10001685110324176RF00049

100014231217818751RF00048

10006222218922052RF00047

10000884111429294RF00046

211111222119323460RF00043

211123925112228272RF00042

3222261291146377102RF00041

10004261117216043RF00039

10003072141151394118RF00038

100019101459422RF00037

322245426113234494RF00035

43331161181131343104RF00034

211165616111429184RF00033

10005961418222RF00032

10006132219019343RF00031

1000101131110525354RF00027

10008845121031099RF00026

3222133137113736891RF00021

100096215113930788RF00019

10003559111176352107RF00016

4333372311175430120RF00015

322232231110427566RF00014

211142015110517145RF00008

100084420118428074RF00006

322212921113023061RF00005

2111203134113736691RF00001

Num
END

Num
BEGR

Num
BEGL

Num
BIF

Num
MATR

Num
MATL

Num
MATP

Num
ROOTW

Num
States

Num
NodesCM

10002573113619964RF00070

10000684113023274RF00069

10003844111328993RF00068

1000324918413938RF00066

10007517181145388112RF00065

1000441917111429582RF00063

10003755201151400114RF00060

2111104813110326177RF00057

21111343391153411101RF00056

10000755117225982RF00055

10001775110626885RF00054

100082428110726862RF00053

10006222219022052RF00052

1000102225110025059RF00051

10001685110324176RF00049

100014231217818751RF00048

10006222218922052RF00047

10000884111429294RF00046

211111222119323460RF00043

211123925112228272RF00042

3222261291146377102RF00041

10004261117216043RF00039

10003072141151394118RF00038

100019101459422RF00037

322245426113234494RF00035

43331161181131343104RF00034

211165616111429184RF00033

10005961418222RF00032

10006132219019343RF00031

1000101131110525354RF00027

10008845121031099RF00026

3222133137113736891RF00021

100096215113930788RF00019

10003559111176352107RF00016

4333372311175430120RF00015

322232231110427566RF00014

211142015110517145RF00008

100084420118428074RF00006

322212921113023061RF00005

2111203134113736691RF00001

Num
END

Num
BEGR

Num
BEGL

Num
BIF

Num
MATR

Num
MATL

Num
MATP

Num
ROOTW

Num
States

Num
NodesCM

Table B.1: Covariance Model Data

130

Appendix C

Additional Results for the Baseline

Architecture

This appendix contains additional results comparing the estimated performance of the base-

line architecture to the Infernal (version 0.81) software package.

The evaluation system for the Infernal software contains dual Intel Xeon 2.8 GHz

CPUs and 6 GBytes of DDR2 SDRAM running Linux CentOS 5.0. Infernal was run with

the –toponly and –noalign options to ensure that Infernal was not doing more work than

the baseline architecture. Results were collected for both the standard version of Infernal

as well as Infernal using the Query Dependent Banding (QDB) heuristic [53]. The time

required for Infernal to process a randomly generated database of 1 million residues was

measured. For this appendix, the time required to process 1 million residues was used to

estimate the time required to process 100 million residues.

As described in Section 6.5, these results for the baseline architecture are an estimate

based on several factors including: the depth of the pipeline required to process a given

covariance model (CM), the measured time required to transmit 100 million residues to the

baseline architecture, and a clock frequency of 100 MHz for the baseline architecture.

– CM - the covariance model from the Rfam 8.0 database.

– Num PEs - the number of processing elements required for the baseline architecture

pipeline.

131

– Pipeline Width - the maximum width of the pipeline.

– Pipeline Depth - the depth of the pipeline. The depth of the pipeline is used to

define the latency of the pipeline.

– Latency - the latency of the pipeline for a pipeline running at 100 MHz.

– HW Processing Time - the time, in seconds, that it takes the baseline architecture

to process 100 million residues.

– I/O Latency - the measured time, in seconds, to send 100 million residues to the

baseline architecture.

– Total Time with measured I/O - the expected time, in seconds, to process 100

million residues with the baseline architecture on the test system. The I/O on the

test system required 41.434 seconds to transmit 100 million residues (25 MBytes) to

the baseline architecture.

– Infernal Time (seconds) - the time required for Infernal to process 100 million

residues. The number is based on the results in Appendix E, which measured the

time for Infernal to process 1 million residues.

– Infernal Time (QDB) (seconds) - the time required for Infernal to process 1

million residues when using the QDB heuristic. The number is based on the results

in Appendix E. which measured the time for Infernal to process 1 million residues

with the QDB heuristic.

– Expected Speedup over Infernal - the estimated speedup of the baseline archi-

tecture over the Infernal software package.

– Expected Speedup over Infernal (w/QDB) - the estimated speedup of the base-

line architecture over the Infernal software package using the QDB heuristic.

132

2380332910098914128142.43401991.000019919900199210841852791RF00070

213936849076715632242.43402031.000020320300203221851976008RF00069

194639208257416635942.43402051.000020520500205200081865044RF00068

12461735528697363142.43401211.0000121121001218839495049RF00066

3131734213284431156342.43402561.000025625600256333124109991RF00065

226046619590619777142.43401951.000019519500195205751934547RF00063

3497833714838635378442.43402641.000026426400264366934593080RF00060

160239066796516574842.43401591.000015915900159198111432755RF00057

36661042315554844226942.43402171.000021721700217502684953865RF00056

3279543613912623066042.43402531.000025325300253346873851677RF00055

188234857985514788942.4340191.00001919000190178481522615RF00054

2798485011872020578742.43401681.000016816800168211051546318RF00053

197732828390113927442.43401411.00001411410014114615899466RF00052

2379412710094017510542.43401581.000015815800158178621260808RF00051

162130766878113053842.43401781.000017817800178164051292725RF00049

12712144539429096742.43401281.0000128128001289767576080RF00048

200332028497513586542.4340141.0000141400014014354879727RF00047

196439998335216968742.43402071.000020720700207203391917744RF00046

155036306576015404742.4340131.00001313000130173431046417RF00043

2365575010036924399442.43401781.000017817800178283892170975RF00042

2797914711869238815642.43402061.000020620600206445094243415RF00041

11431760484917469842.43401141.0000114114001148155420126RF00039

3265778513853933037042.43402681.000026826800268366014525738RF00038

520726220663079842.43400661.0000066660066334196771RF00037

2501763110614732380142.43401831.000018318300183385333165067RF00035

206274198752031483642.43401871.000018718700187387723181038RF00034

201049718528121095442.43401891.000018918900189230371954810RF00033

353514149622182142.43400621.0000062620062246370377RF00032

175829217459212393942.43401321.00001321320013213394788082RF00031

2988473112678320073542.43401581.000015815800158206291404743RF00027

3822716816216530416642.43403081.000030830800308493596865523RF00026

2883894012232437934742.43401891.000018918900189414273639478RF00021

3438600214586725467542.43402261.000022622600226306812987475RF00019

4443791818852133600042.43402821.000028228200282432565484002RF00016

37641330815973256471942.4340231.00002323000230664157138305RF00015

188152487979922270242.43401411.000014114100141236591568965RF00014

200631618513213413342.43401411.00001411410014115681984853RF00008

5424779123015433060842.43402571.000025725700257419574758405RF00006

205955628738823601042.43401621.000016216200162265832093665RF00005

3027823612844334949242.43401951.000019519500195394923539545RF00001

Expected
Speedup

over Infernal
(w/QDB)

Expected
Speedup

over
Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)

Total Time
with

measured I/O
(seconds)

HW
Processing

Time
(seconds)

Latency
(ns)

Pipeline
Depth

Pipeline
Width

Num
PEsCM

2380332910098914128142.43401991.000019919900199210841852791RF00070

213936849076715632242.43402031.000020320300203221851976008RF00069

194639208257416635942.43402051.000020520500205200081865044RF00068

12461735528697363142.43401211.0000121121001218839495049RF00066

3131734213284431156342.43402561.000025625600256333124109991RF00065

226046619590619777142.43401951.000019519500195205751934547RF00063

3497833714838635378442.43402641.000026426400264366934593080RF00060

160239066796516574842.43401591.000015915900159198111432755RF00057

36661042315554844226942.43402171.000021721700217502684953865RF00056

3279543613912623066042.43402531.000025325300253346873851677RF00055

188234857985514788942.4340191.00001919000190178481522615RF00054

2798485011872020578742.43401681.000016816800168211051546318RF00053

197732828390113927442.43401411.00001411410014114615899466RF00052

2379412710094017510542.43401581.000015815800158178621260808RF00051

162130766878113053842.43401781.000017817800178164051292725RF00049

12712144539429096742.43401281.0000128128001289767576080RF00048

200332028497513586542.4340141.0000141400014014354879727RF00047

196439998335216968742.43402071.000020720700207203391917744RF00046

155036306576015404742.4340131.00001313000130173431046417RF00043

2365575010036924399442.43401781.000017817800178283892170975RF00042

2797914711869238815642.43402061.000020620600206445094243415RF00041

11431760484917469842.43401141.0000114114001148155420126RF00039

3265778513853933037042.43402681.000026826800268366014525738RF00038

520726220663079842.43400661.0000066660066334196771RF00037

2501763110614732380142.43401831.000018318300183385333165067RF00035

206274198752031483642.43401871.000018718700187387723181038RF00034

201049718528121095442.43401891.000018918900189230371954810RF00033

353514149622182142.43400621.0000062620062246370377RF00032

175829217459212393942.43401321.00001321320013213394788082RF00031

2988473112678320073542.43401581.000015815800158206291404743RF00027

3822716816216530416642.43403081.000030830800308493596865523RF00026

2883894012232437934742.43401891.000018918900189414273639478RF00021

3438600214586725467542.43402261.000022622600226306812987475RF00019

4443791818852133600042.43402821.000028228200282432565484002RF00016

37641330815973256471942.4340231.00002323000230664157138305RF00015

188152487979922270242.43401411.000014114100141236591568965RF00014

200631618513213413342.43401411.00001411410014115681984853RF00008

5424779123015433060842.43402571.000025725700257419574758405RF00006

205955628738823601042.43401621.000016216200162265832093665RF00005

3027823612844334949242.43401951.000019519500195394923539545RF00001

Expected
Speedup

over Infernal
(w/QDB)

Expected
Speedup

over
Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)

Total Time
with

measured I/O
(seconds)

HW
Processing

Time
(seconds)

Latency
(ns)

Pipeline
Depth

Pipeline
Width

Num
PEsCM

Table C.1: Estimated speedup for baseline architecture running at 100 MHz compared to
Infernal

133

Appendix D

Additional Results for the

Processor Array Architecture

This appendix contains a complete set of results for the processor array architecture pre-

sented in Chapter 7. Tables D.1 through D.9 present results for 40 different covariance

models (CMs) from the Rfam 8.0 database [33] for a single processor up to 256 processors.

In those tables, the columns are as follows:

– CM - the covariance model from the Rfam 8.0 database.

– Time - the time, in seconds, to generate a schedule for a single window W of the

CM (on Intel Xeon 2.8 GHz CPU with 6 GBytes of DDR2 SDRAM running Linux

CentOS 5.0).

– Num Computations - the number of computations (i.e. the number of nodes in

the task graph) that need to be completed for the specified CM.

– Cycles To Compute - the number of clock cycles (i.e. the number of time slots in

the final schedule) that it takes to compute the results for a single window W of the

specified CM, including any idle time in the schedule.

– Total Cycles - the total number of clock cycles, among all processors, that are

required to compute the result (i.e. p× CyclesToCompute where p is the number of

processors), including any idle time in the schedule.

134

– Schedule Efficiency - the efficiency of the schedule that is generated for the specified

CM. The efficiency of the schedule is a measure of the number of idle tasks inserted

into the schedule (NumComputationsTotalCycles). The fewer idle tasks inserted into the schedule,

the higher the efficiency.

– Max Live Memory - the maximum number of intermediary values that must be

stored throughout the alignment computation. The numbers in the tables represent

generic memory locations. The actual size of the memory required will depend on

the size/precision of the intermediary values as described in Section 5.5. If two bytes

are used to represent values, then the required memory will be 2×MaxLiveMemory

bytes.

– Average Memory - the average amount of memory required for each processor in

the processor array architecture.

– Speedup - the speedup over a processor array with only a single processor (this

column is not shown in Table D.1, as the value is simply 1).

– Processor Efficiency - the efficiency of the processors in the processor array archi-

tecture as compared to a processor array with only a single processor (Speedupp where

p is the number of processors in the processor array).

– Schedule Size/Proc - the size, in MB, of the schedule for each processor in the

processor array architecture. The size is based on the instruction format discussed in

Section 7.2.1.

– Total Schedule Size - the total size, in MB, of the schedules for all processors in the

processor array architecture. The size is based on the instruction format discussed in

Section 7.2.1.

135

28.0228.02296032960399.9918528011852801185279136.98RF00070

29.8929.89311123111299.9919760181976018197600839.38RF00069

28.2128.21280432804399.9918650551865055186504436.49RF00068

7.497.49130821308299.994950594950594950499.28RF00066

62.1662.16469184691899.9941100014110001410999191.31RF00065

29.2629.26294042940499.9919345581934558193454741.07RF00063

69.4769.47522845228499.99459309045930904593080103.21RF00060

21.6721.67346743467499.9914327661432766143275530.32RF00057

74.9374.93839288392899.99495387549538754953865126.02RF00056

58.2658.26486744867499.9938516873851687385167781.22RF00055

23.0323.03252852528599.9915226251522625152261529.58RF00054

23.3923.39333263332699.9915463291546329154631834.29RF00053

13.6013.60229452294599.9989947689947689946618.99RF00052

19.0719.07278562785699.9912608191260819126080827.09RF00051

19.5519.55233072330799.9912927361292736129272524.8RF00049

8.718.71144171441799.9957609057609057608010.9RF00048

13.3113.31225662256699.9987973787973787972718.7RF00047

29.0129.01284712847199.9919177551917755191774437.74RF00046

15.8315.83280822808299.9910464281046428104641722.84RF00043

32.8432.84502985029899.9921709852170985217097552RF00042

64.1864.1810032410032499.99424342542434254243415114.29RF00041

6.356.35122271222799.994201364201364201267.82RF00039

68.4568.45519655196599.9945257484525748452573898.84RF00038

1.461.465359535999.989678196781967711.65RF00037

47.8747.87823038230399.9931650783165078316506778.74RF00035

48.1148.11970699706999.9931810493181049318103878.04RF00034

29.5729.57474924749299.9919548201954820195481042.5RF00033

1.061.063752375299.987038770387703771.06RF00032

11.9211.92212472124799.9978809278809278808216.68RF00031

21.2521.25332183321899.9914047531404753140474331.57RF00027

103.84103.84676806768099.99686553368655336865523155.56RF00026

55.0555.05871928719299.9936394893639489363947891.73RF00021

45.1945.19452474524799.9929874852987485298747564.31RF00019

82.9582.95609196091999.99548401254840125484002121.57RF00016

107.97107.9718617818617899.99713831571383157138305216.88RF00015

23.7323.73488014880199.9915689761568976156896537.04RF00014

14.9014.90303653036599.9998486498486498485321.24RF00008

71.9771.97632286322899.99475841547584154758405111.15RF00006

31.6731.67648226482299.9920936752093675209366551.41RF00005

53.5453.54687466874699.9935395553539555353954590.77RF00001

Total Schedule
Size (MB)

Schedule Size
/Proc(MB)

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

28.0228.02296032960399.9918528011852801185279136.98RF00070

29.8929.89311123111299.9919760181976018197600839.38RF00069

28.2128.21280432804399.9918650551865055186504436.49RF00068

7.497.49130821308299.994950594950594950499.28RF00066

62.1662.16469184691899.9941100014110001410999191.31RF00065

29.2629.26294042940499.9919345581934558193454741.07RF00063

69.4769.47522845228499.99459309045930904593080103.21RF00060

21.6721.67346743467499.9914327661432766143275530.32RF00057

74.9374.93839288392899.99495387549538754953865126.02RF00056

58.2658.26486744867499.9938516873851687385167781.22RF00055

23.0323.03252852528599.9915226251522625152261529.58RF00054

23.3923.39333263332699.9915463291546329154631834.29RF00053

13.6013.60229452294599.9989947689947689946618.99RF00052

19.0719.07278562785699.9912608191260819126080827.09RF00051

19.5519.55233072330799.9912927361292736129272524.8RF00049

8.718.71144171441799.9957609057609057608010.9RF00048

13.3113.31225662256699.9987973787973787972718.7RF00047

29.0129.01284712847199.9919177551917755191774437.74RF00046

15.8315.83280822808299.9910464281046428104641722.84RF00043

32.8432.84502985029899.9921709852170985217097552RF00042

64.1864.1810032410032499.99424342542434254243415114.29RF00041

6.356.35122271222799.994201364201364201267.82RF00039

68.4568.45519655196599.9945257484525748452573898.84RF00038

1.461.465359535999.989678196781967711.65RF00037

47.8747.87823038230399.9931650783165078316506778.74RF00035

48.1148.11970699706999.9931810493181049318103878.04RF00034

29.5729.57474924749299.9919548201954820195481042.5RF00033

1.061.063752375299.987038770387703771.06RF00032

11.9211.92212472124799.9978809278809278808216.68RF00031

21.2521.25332183321899.9914047531404753140474331.57RF00027

103.84103.84676806768099.99686553368655336865523155.56RF00026

55.0555.05871928719299.9936394893639489363947891.73RF00021

45.1945.19452474524799.9929874852987485298747564.31RF00019

82.9582.95609196091999.99548401254840125484002121.57RF00016

107.97107.9718617818617899.99713831571383157138305216.88RF00015

23.7323.73488014880199.9915689761568976156896537.04RF00014

14.9014.90303653036599.9998486498486498485321.24RF00008

71.9771.97632286322899.99475841547584154758405111.15RF00006

31.6731.67648226482299.9920936752093675209366551.41RF00005

53.5453.54687466874699.9935395553539555353954590.77RF00001

Total Schedule
Size (MB)

Schedule Size
/Proc(MB)

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

Table D.1: Results for processor array architecture using 1 processor

136

29.5214.7699.631.9928147512950199.631859540929770185279136.99RF00070

31.5515.7799.441.9888155093101899.431987136993568197600839.38RF00069

29.7214.8699.61.9921140052800999.61872438936219186504436.53RF00068

7.933.9699.111.982465431308699.114994642497324950499.3RF00066

65.4832.7499.631.9927234494689799.6341249642062482410999191.41RF00065

30.8815.4499.461.9893146912938199.461944924972462193454741.08RF00063

73.1136.5699.731.9946261365227299.73460545623027284593080103.25RF00060

23.4911.7596.821.9364186213724196.821479806739903143275530.34RF00057

80.9440.4797.161.9433461669233297.16509849025492454953865126.27RF00056

61.3830.6999.611.9923243164863299.6138666041933302385167781.24RF00055

24.3112.1699.431.9886126252524999.421531344765672152261529.62RF00054

24.7112.3599.351.9870166463329199.351556416778208154631834.61RF00053

14.397.1999.231.9848114832296699.2390637445318789946619.03RF00052

20.1010.0599.561.9912139372787399.551266386633193126080827.14RF00051

20.6110.3099.591.9918116212324299.591298042649021129272524.81RF00049

9.204.6099.391.987972181443699.3957959228979657608010.91RF00048

14.047.0299.441.9890112922258499.4488461644230887972718.72RF00047

30.5715.2899.591.9918142292845899.591925608962804191774437.8RF00046

17.188.5996.671.9334146212924296.671082448541224104641722.99RF00043

35.4217.7197.31.9462277405547997.322310321115516217097551.81RF00042

68.5334.2798.291.96595299910599798.29431703621585184243415114.63RF00041

6.703.3599.471.989561191223899.474223582111794201267.86RF00039

72.0736.0499.681.9937259735194699.6845401442270072452573899.19RF00038

1.570.7897.961.95932667533397.959879249396967711.65RF00037

53.2226.6194.411.8883451019020194.4133522881676144316506779.03RF00035

54.4927.2592.671.85345268010536092.6734325901716295318103878.25RF00034

31.9815.9997.041.9408253265065197.0420144161007208195481042.51RF00033

1.140.5798.021.960418743748987180835904703771.07RF00032

12.636.3199.051.9812105972119399.0579557839778978808216.77RF00031

22.3511.1799.771.9956166203324099.771407864703932140474331.46RF00027

109.4054.7099.621.9925337846756899.62689135834456796865523154.83RF00026

59.2029.6097.61.9520456739134697.637289141864457363947891.49RF00021

47.6723.8399.491.9898226154522999.4930027821501391298747564.37RF00019

87.3943.7099.611.9924303896077899.61550505427525275484002121.35RF00016

121.9360.9792.931.85879776619553292.93768077838403897138305219.42RF00015

25.5712.7997.41.9481254935098597.41610814805407156896537.69RF00014

16.208.1096.541.9308167323346496.53102016051008098485321.27RF00008

75.8137.9199.631.9928316006320099.63477570023878504758405111.58RF00006

34.2917.1596.921.9385339246784796.9221600501080025209366551.43RF00005

57.7928.9097.221.9446377187543597.2236404441820222353954590.68RF00001

Total Schedule
Size (MB)

Schedule
Size/Proc(MB)

Processor
Efficiency (%)Speedup

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

29.5214.7699.631.9928147512950199.631859540929770185279136.99RF00070

31.5515.7799.441.9888155093101899.431987136993568197600839.38RF00069

29.7214.8699.61.9921140052800999.61872438936219186504436.53RF00068

7.933.9699.111.982465431308699.114994642497324950499.3RF00066

65.4832.7499.631.9927234494689799.6341249642062482410999191.41RF00065

30.8815.4499.461.9893146912938199.461944924972462193454741.08RF00063

73.1136.5699.731.9946261365227299.73460545623027284593080103.25RF00060

23.4911.7596.821.9364186213724196.821479806739903143275530.34RF00057

80.9440.4797.161.9433461669233297.16509849025492454953865126.27RF00056

61.3830.6999.611.9923243164863299.6138666041933302385167781.24RF00055

24.3112.1699.431.9886126252524999.421531344765672152261529.62RF00054

24.7112.3599.351.9870166463329199.351556416778208154631834.61RF00053

14.397.1999.231.9848114832296699.2390637445318789946619.03RF00052

20.1010.0599.561.9912139372787399.551266386633193126080827.14RF00051

20.6110.3099.591.9918116212324299.591298042649021129272524.81RF00049

9.204.6099.391.987972181443699.3957959228979657608010.91RF00048

14.047.0299.441.9890112922258499.4488461644230887972718.72RF00047

30.5715.2899.591.9918142292845899.591925608962804191774437.8RF00046

17.188.5996.671.9334146212924296.671082448541224104641722.99RF00043

35.4217.7197.31.9462277405547997.322310321115516217097551.81RF00042

68.5334.2798.291.96595299910599798.29431703621585184243415114.63RF00041

6.703.3599.471.989561191223899.474223582111794201267.86RF00039

72.0736.0499.681.9937259735194699.6845401442270072452573899.19RF00038

1.570.7897.961.95932667533397.959879249396967711.65RF00037

53.2226.6194.411.8883451019020194.4133522881676144316506779.03RF00035

54.4927.2592.671.85345268010536092.6734325901716295318103878.25RF00034

31.9815.9997.041.9408253265065197.0420144161007208195481042.51RF00033

1.140.5798.021.960418743748987180835904703771.07RF00032

12.636.3199.051.9812105972119399.0579557839778978808216.77RF00031

22.3511.1799.771.9956166203324099.771407864703932140474331.46RF00027

109.4054.7099.621.9925337846756899.62689135834456796865523154.83RF00026

59.2029.6097.61.9520456739134697.637289141864457363947891.49RF00021

47.6723.8399.491.9898226154522999.4930027821501391298747564.37RF00019

87.3943.7099.611.9924303896077899.61550505427525275484002121.35RF00016

121.9360.9792.931.85879776619553292.93768077838403897138305219.42RF00015

25.5712.7997.41.9481254935098597.41610814805407156896537.69RF00014

16.208.1096.541.9308167323346496.53102016051008098485321.27RF00008

75.8137.9199.631.9928316006320099.63477570023878504758405111.58RF00006

34.2917.1596.921.9385339246784796.9221600501080025209366551.43RF00005

57.7928.9097.221.9446377187543597.2236404441820222353954590.68RF00001

Total Schedule
Size (MB)

Schedule
Size/Proc(MB)

Processor
Efficiency (%)Speedup

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

Table D.2: Results for processor array architecture using 2 processors

137

31.267.8198.543.941873932957198.541880176470044185279137.02RF00070

33.318.3398.613.944777663106598.612003740500935197600839.45RF00069

31.417.8598.713.948570062802598.711889384472346186504436.53RF00068

8.442.1197.543.901632831313297.535075401268854950499.25RF00066

69.0217.25993.960111729469149941514201037855410999191.58RF00065

32.638.1698.563.942773532941098.561962692490673193454741.05RF00063

77.0319.2699.133.9653130715228399.13463324011583104593080102.81RF00060

26.046.5191.453.658499393975791.451566556391639143275530.45RF00057

89.3922.3592.133.6854239879594692.13537679213441984953865127RF00056

64.8316.2198.773.9511121804872098.773899308974827385167781.46RF00055

25.716.4398.453.938363172526798.451546488386622152261529.61RF00054

26.076.5298.63.944083283331398.61568272392068154631834.19RF00053

15.203.8098.353.934457622304698.3591447622861989946619.02RF00052

21.265.3298.573.943269692787598.571278996319749126080827.21RF00051

21.805.4598.573.943258342333498.571311360327840129272524.88RF00049

9.762.4498.083.923536121444998.0858732014683057608010.96RF00048

14.843.7198.523.941256482259298.5289286422321687972718.62RF00047

32.308.0798.73.948371182847198.71942852485713191774437.79RF00046

18.974.7491.723.668980243209491.721140860285215104641722.89RF00043

39.199.8092.093.6839150246009592.092357280589320217097551.52RF00042

76.3819.1092.363.69442858811435092.36459442011486054243415114.65RF00041

7.111.7898.183.927530641225798.184278881069724201267.78RF00039

75.9819.0099.023.9609129895195499.0245703801142595452573899.41RF00038

1.680.4295.613.82471335534095.610121625304967711.66RF00037

61.3015.3285.843.4338247399895585.843686972921743316506778.99RF00035

61.4815.3786.023.44102731210924986.023697856924464318103878.44RF00034

35.498.8791.573.6630133355334091.572134640533660195481042.66RF00033

1.230.3195.173.8072941376595.167395218488703771.07RF00032

13.353.3498.153.926253072122898.1580289620072478808216.97RF00031

23.585.8999.053.962183143325499.051418200354550140474331.46RF00027

115.3928.8598.913.9566169196767798.91694082817352076865523155.4RF00026

66.7416.6890.663.62662589210356990.6640142601003565363947891.78RF00021

50.3212.5898.693.9479113164526598.693026876756719298747564.66RF00019

92.0623.0299.023.9612152086083399.02553774413844365484002121.61RF00016

146.6736.6780.913.23665187320749380.91882198422054967138305219.01RF00015

28.767.1990.683.6275141395655490.681730104432526156896537.14RF00014

18.424.6088.883.555690803631988.88110796427699198485321.27RF00008

79.8119.9599.113.9647158276330899.11480078412001964758405111.03RF00006

39.549.8988.023.5210189667586488.022378480594620209366551.64RF00005

63.5415.8992.63.7043204808191892.63822116955529353954590.9RF00001

Total Schedule
Size (MB)

Schedule
Size/Proc(MB)

Processor
Efficiency (%)Speedup

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

31.267.8198.543.941873932957198.541880176470044185279137.02RF00070

33.318.3398.613.944777663106598.612003740500935197600839.45RF00069

31.417.8598.713.948570062802598.711889384472346186504436.53RF00068

8.442.1197.543.901632831313297.535075401268854950499.25RF00066

69.0217.25993.960111729469149941514201037855410999191.58RF00065

32.638.1698.563.942773532941098.561962692490673193454741.05RF00063

77.0319.2699.133.9653130715228399.13463324011583104593080102.81RF00060

26.046.5191.453.658499393975791.451566556391639143275530.45RF00057

89.3922.3592.133.6854239879594692.13537679213441984953865127RF00056

64.8316.2198.773.9511121804872098.773899308974827385167781.46RF00055

25.716.4398.453.938363172526798.451546488386622152261529.61RF00054

26.076.5298.63.944083283331398.61568272392068154631834.19RF00053

15.203.8098.353.934457622304698.3591447622861989946619.02RF00052

21.265.3298.573.943269692787598.571278996319749126080827.21RF00051

21.805.4598.573.943258342333498.571311360327840129272524.88RF00049

9.762.4498.083.923536121444998.0858732014683057608010.96RF00048

14.843.7198.523.941256482259298.5289286422321687972718.62RF00047

32.308.0798.73.948371182847198.71942852485713191774437.79RF00046

18.974.7491.723.668980243209491.721140860285215104641722.89RF00043

39.199.8092.093.6839150246009592.092357280589320217097551.52RF00042

76.3819.1092.363.69442858811435092.36459442011486054243415114.65RF00041

7.111.7898.183.927530641225798.184278881069724201267.78RF00039

75.9819.0099.023.9609129895195499.0245703801142595452573899.41RF00038

1.680.4295.613.82471335534095.610121625304967711.66RF00037

61.3015.3285.843.4338247399895585.843686972921743316506778.99RF00035

61.4815.3786.023.44102731210924986.023697856924464318103878.44RF00034

35.498.8791.573.6630133355334091.572134640533660195481042.66RF00033

1.230.3195.173.8072941376595.167395218488703771.07RF00032

13.353.3498.153.926253072122898.1580289620072478808216.97RF00031

23.585.8999.053.962183143325499.051418200354550140474331.46RF00027

115.3928.8598.913.9566169196767798.91694082817352076865523155.4RF00026

66.7416.6890.663.62662589210356990.6640142601003565363947891.78RF00021

50.3212.5898.693.9479113164526598.693026876756719298747564.66RF00019

92.0623.0299.023.9612152086083399.02553774413844365484002121.61RF00016

146.6736.6780.913.23665187320749380.91882198422054967138305219.01RF00015

28.767.1990.683.6275141395655490.681730104432526156896537.14RF00014

18.424.6088.883.555690803631988.88110796427699198485321.27RF00008

79.8119.9599.113.9647158276330899.11480078412001964758405111.03RF00006

39.549.8988.023.5210189667586488.022378480594620209366551.64RF00005

63.5415.8992.63.7043204808191892.63822116955529353954590.9RF00001

Total Schedule
Size (MB)

Schedule
Size/Proc(MB)

Processor
Efficiency (%)Speedup

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

Table D.3: Results for processor array architecture using 4 processors

138

33.204.1596.957.756237182974596.951911032238879185279137.54RF00070

35.394.42977.7603390231217972037064254633197600839.71RF00069

33.424.1896.977.758135372829796.971923200240400186504436.69RF00068

9.111.1494.457.556716631330394.45524104655134950499.24RF00066

73.109.1497.697.815259354747697.694207168525896410999194.18RF00065

34.624.3397.097.767737322985597.091992400249050193454741.13RF00063

81.4710.1897.957.836066095287197.9546892085861514593080102.99RF00060

29.923.7483.216.657048973917983.211721816215227143275530.82RF00057

101.9712.7584.46.75271274610196884.458688727336094953865127.38RF00056

68.938.6297.087.766961204895797.083967264495908385167781.96RF00055

27.393.4296.67.728331962556896.61576160197020152261529.67RF00054

27.733.4796.877.750042043363596.871596216199527154631834.47RF00053

16.232.0396.277.702428952316396.2793423211677989946619.12RF00052

22.632.8396.817.745135362828696.811302312162789126080827.19RF00051

23.232.9096.677.734029352347996.671337192167149129272524.95RF00049

10.481.3195.547.643518391471495.546029607537057608011.04RF00048

15.851.9896.427.713728682294696.4291238411404887972718.67RF00047

34.374.3096.947.755536042882896.941978216247277191774437.99RF00046

22.172.7782.026.562042573405582.021275736159467104641722.96RF00043

45.755.7282.456.596779206336382.452632824329103217097551.8RF00042

89.7111.2182.186.57461539412315482.1851634406454304243415115.64RF00041

7.620.9595.747.659415621249795.74438816548524201267.81RF00039

80.4510.0697.747.819765595247597.744630096578762452573899.12RF00038

1.830.2391.667.3336682545891.6610557613197967711.67RF00037

75.819.4872.545.80351255910046872.544362960545370316506779.27RF00035

77.599.7071.225.69841401011208371.224465896558237318103878.61RF00034

40.665.0883.526.682364615168683.522340304292538195481042.71RF00033

1.350.1790.47.2325485388190.39778569732703771.07RF00032

14.211.7896.357.708726812144796.3581787210223478808216.84RF00031

25.093.1497.287.782741883350097.281443976180497140474331.47RF00027

121.9115.2497.857.828285056803997.8570162488770316865523155.02RF00026

79.769.9779.286.34251396611172779.284590600573825363947892.07RF00021

53.426.6897.167.773257024561797.163074648384331298747564.86RF00019

97.3312.1797.897.831776396111097.8956018727002345484002122.43RF00016

172.3121.5471.975.75832692921543071.97991732012396657138305221.93RF00015

34.204.2779.716.377273985918079.711968232246029156896537.14RF00014

22.312.7976.716.137345903672376.71128377616047298485321.52RF00008

84.2610.5398.127.849879416352598.1248494566061824758405111.02RF00006

48.516.0674.985.9990101518120774.982792040349005209366551.7RF00005

73.439.1883.756.7002105138410483.754226232528279353954591.25RF00001

Total Schedule
Size (MB)

Schedule
Size/Proc(MB)

Processor
Efficiency (%)Speedup

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

33.204.1596.957.756237182974596.951911032238879185279137.54RF00070

35.394.42977.7603390231217972037064254633197600839.71RF00069

33.424.1896.977.758135372829796.971923200240400186504436.69RF00068

9.111.1494.457.556716631330394.45524104655134950499.24RF00066

73.109.1497.697.815259354747697.694207168525896410999194.18RF00065

34.624.3397.097.767737322985597.091992400249050193454741.13RF00063

81.4710.1897.957.836066095287197.9546892085861514593080102.99RF00060

29.923.7483.216.657048973917983.211721816215227143275530.82RF00057

101.9712.7584.46.75271274610196884.458688727336094953865127.38RF00056

68.938.6297.087.766961204895797.083967264495908385167781.96RF00055

27.393.4296.67.728331962556896.61576160197020152261529.67RF00054

27.733.4796.877.750042043363596.871596216199527154631834.47RF00053

16.232.0396.277.702428952316396.2793423211677989946619.12RF00052

22.632.8396.817.745135362828696.811302312162789126080827.19RF00051

23.232.9096.677.734029352347996.671337192167149129272524.95RF00049

10.481.3195.547.643518391471495.546029607537057608011.04RF00048

15.851.9896.427.713728682294696.4291238411404887972718.67RF00047

34.374.3096.947.755536042882896.941978216247277191774437.99RF00046

22.172.7782.026.562042573405582.021275736159467104641722.96RF00043

45.755.7282.456.596779206336382.452632824329103217097551.8RF00042

89.7111.2182.186.57461539412315482.1851634406454304243415115.64RF00041

7.620.9595.747.659415621249795.74438816548524201267.81RF00039

80.4510.0697.747.819765595247597.744630096578762452573899.12RF00038

1.830.2391.667.3336682545891.6610557613197967711.67RF00037

75.819.4872.545.80351255910046872.544362960545370316506779.27RF00035

77.599.7071.225.69841401011208371.224465896558237318103878.61RF00034

40.665.0883.526.682364615168683.522340304292538195481042.71RF00033

1.350.1790.47.2325485388190.39778569732703771.07RF00032

14.211.7896.357.708726812144796.3581787210223478808216.84RF00031

25.093.1497.287.782741883350097.281443976180497140474331.47RF00027

121.9115.2497.857.828285056803997.8570162488770316865523155.02RF00026

79.769.9779.286.34251396611172779.284590600573825363947892.07RF00021

53.426.6897.167.773257024561797.163074648384331298747564.86RF00019

97.3312.1797.897.831776396111097.8956018727002345484002122.43RF00016

172.3121.5471.975.75832692921543071.97991732012396657138305221.93RF00015

34.204.2779.716.377273985918079.711968232246029156896537.14RF00014

22.312.7976.716.137345903672376.71128377616047298485321.52RF00008

84.2610.5398.127.849879416352598.1248494566061824758405111.02RF00006

48.516.0674.985.9990101518120774.982792040349005209366551.7RF00005

73.439.1883.756.7002105138410483.754226232528279353954591.25RF00001

Total Schedule
Size (MB)

Schedule
Size/Proc(MB)

Processor
Efficiency (%)Speedup

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

Table D.4: Results for processor array architecture using 8 processors

139

36.192.2692.814.848318753000492.81996512124782185279137.2RF00070

38.362.4093.3514.937519663145993.352116576132286197600839.73RF00069

36.112.2693.614.977017972874893.61992448124528186504436.7RF00068

9.960.6290.1214.41938561369490.11549328343334950499.3RF00066

78.264.8995.1915.230630374858595.194317632269852410999191.87RF00065

37.322.3393.9415.030819153064693.942059296128706193454741.25RF00063

87.075.4495.6115.298733725395795.6148036323002274593080103.65RF00060

37.082.3270.0311.206124833973570.032045696127856143275530.55RF00057

124.447.7872.1511.5444672110754372.1568658244291144953865127.2RF00056

74.304.6493.9615.034130734916493.964099152256197385167781.94RF00055

29.621.8593.1614.906116212593193.161634368102148152261529.72RF00054

29.771.8694.1515.064521333412994.151642352102647154631834.3RF00053

17.561.1092.8214.851414712354392.829690406056589946619.11RF00052

24.341.5293.8815.021918162905493.88134291283932126080827.26RF00051

25.201.5892.9714.875614872378492.97139044886903129272524.93RF00049

11.460.7291.114.57729451512091.16323203952057608010.95RF00048

17.141.079314.8808147023527939459045911987972718.69RF00047

37.182.3293.4814.958318332932493.482051312128207191774437.89RF00046

28.161.7667.3410.775622413585767.34155377697111104641723.02RF00043

58.833.6866.8910.702440806528066.883245600202850217097551.86RF00042

115.327.2166.6910.6710770812333566.6963625603976604243415115.26RF00041

8.350.5291.214.59218051288291.19460672287924201267.83RF00039

86.105.3895.2715.244233405343395.274750144296884452573899.71RF00038

2.030.1386.3913.8239346554186.391120167001967711.67RF00037

89.625.6064.0110.2417639410230464.014944592309037316506779.48RF00035

108.596.7953.098.4954715611449053.095991088374443318103879RF00034

50.673.1769.9211.187531805087369.922795712174732195481043.1RF00033

1.580.1080.8912.9435254405880.88870085438703771.08RF00032

15.290.9693.4314.950313602175593.438434245271478808216.76RF00031

26.851.6894.8315.173721203391994.83148124892578140474331.52RF00027

130.848.1895.115.217442846854295.172186244511646865523155.68RF00026

103.906.4963.4810.1579698011168463.485732640358290363947892.84RF00021

57.443.5994.2615.082828874619694.263169152198072298747565.11RF00019

103.826.4995.7415.318838446150395.7457278883579935484002122.14RF00016

212.2613.2760.959.75291390422246560.95117106567319167138305223.21RF00015

44.492.7863.9210.227238576171663.912454592153412156896537.33RF00014

29.921.8759.669.546123043686259.66165070410316998485321.41RF00008

90.655.6795.1415.223440086412095.1450011523125724758405111.25RF00006

66.744.1756.869.097853078491756.863682080230130209366551.98RF00005

89.845.6271.411.425153268521871.44956880309805353954591.2RF00001

Total Schedule
Size (MB)

Schedule
Size/Proc(MB)

Processor
Efficiency (%)Speedup

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

36.192.2692.814.848318753000492.81996512124782185279137.2RF00070

38.362.4093.3514.937519663145993.352116576132286197600839.73RF00069

36.112.2693.614.977017972874893.61992448124528186504436.7RF00068

9.960.6290.1214.41938561369490.11549328343334950499.3RF00066

78.264.8995.1915.230630374858595.194317632269852410999191.87RF00065

37.322.3393.9415.030819153064693.942059296128706193454741.25RF00063

87.075.4495.6115.298733725395795.6148036323002274593080103.65RF00060

37.082.3270.0311.206124833973570.032045696127856143275530.55RF00057

124.447.7872.1511.5444672110754372.1568658244291144953865127.2RF00056

74.304.6493.9615.034130734916493.964099152256197385167781.94RF00055

29.621.8593.1614.906116212593193.161634368102148152261529.72RF00054

29.771.8694.1515.064521333412994.151642352102647154631834.3RF00053

17.561.1092.8214.851414712354392.829690406056589946619.11RF00052

24.341.5293.8815.021918162905493.88134291283932126080827.26RF00051

25.201.5892.9714.875614872378492.97139044886903129272524.93RF00049

11.460.7291.114.57729451512091.16323203952057608010.95RF00048

17.141.079314.8808147023527939459045911987972718.69RF00047

37.182.3293.4814.958318332932493.482051312128207191774437.89RF00046

28.161.7667.3410.775622413585767.34155377697111104641723.02RF00043

58.833.6866.8910.702440806528066.883245600202850217097551.86RF00042

115.327.2166.6910.6710770812333566.6963625603976604243415115.26RF00041

8.350.5291.214.59218051288291.19460672287924201267.83RF00039

86.105.3895.2715.244233405343395.274750144296884452573899.71RF00038

2.030.1386.3913.8239346554186.391120167001967711.67RF00037

89.625.6064.0110.2417639410230464.014944592309037316506779.48RF00035

108.596.7953.098.4954715611449053.095991088374443318103879RF00034

50.673.1769.9211.187531805087369.922795712174732195481043.1RF00033

1.580.1080.8912.9435254405880.88870085438703771.08RF00032

15.290.9693.4314.950313602175593.438434245271478808216.76RF00031

26.851.6894.8315.173721203391994.83148124892578140474331.52RF00027

130.848.1895.115.217442846854295.172186244511646865523155.68RF00026

103.906.4963.4810.1579698011168463.485732640358290363947892.84RF00021

57.443.5994.2615.082828874619694.263169152198072298747565.11RF00019

103.826.4995.7415.318838446150395.7457278883579935484002122.14RF00016

212.2613.2760.959.75291390422246560.95117106567319167138305223.21RF00015

44.492.7863.9210.227238576171663.912454592153412156896537.33RF00014

29.921.8759.669.546123043686259.66165070410316998485321.41RF00008

90.655.6795.1415.223440086412095.1450011523125724758405111.25RF00006

66.744.1756.869.097853078491756.863682080230130209366551.98RF00005

89.845.6271.411.425153268521871.44956880309805353954591.2RF00001

Total Schedule
Size (MB)

Schedule
Size/Proc(MB)

Processor
Efficiency (%)Speedup

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

Table D.5: Results for processor array architecture using 16 processors

140

41.001.2885.327.29739473029185.3217200067875185279137.23RF00070

43.091.3586.5527.69869983193486.55228288071340197600839.56RF00069

40.281.2687.3827.96489162931387.38213417666693186504436.99RF00068

11.710.3779.7625.52644511444279.76620608193944950499.33RF00066

85.732.6890.4828.956515835067090.484541984141937410999192.16RF00065

41.491.308828.162010103230988219820868694193454741.33RF00063

95.322.9890.9429.103717545612790.9450501761578184593080103.82RF00060

50.881.5953.1417.006912804097353.14269587284246143275530.78RF00057

171.405.3654.5517.4573350011201154.5590806722837714953865127.61RF00056

82.582.5888.0328.172715574983388.034374944136717385167782.26RF00055

33.291.0486.3427.62988282649286.34176345655108152261529.77RF00054

33.281.0487.728.065610983512187.7176310455097154631834.53RF00053

19.540.6186.8627.79767572422286.8610354563235889946619.15RF00052

26.920.8488.428.28989453024588.4142617644568126080827.45RF00051

28.440.8985.7927.45607572423885.79150668847084129272524.9RF00049

13.060.4183.2526.64125041614283.256919682162457608010.99RF00048

19.070.6087.0827.86627672454987.0810102403157087972718.82RF00047

41.481.3087.2727.92799393004887.27219737668668191774437.9RF00046

37.601.1752.5316.811411663729752.53199184062245104641723.16RF00043

83.072.6049.3215.784321126756949.324401312137541217097552.24RF00042

163.115.1049.115.7135397612721949.186416002700504243415115.88RF00041

9.560.3082.9226.53714271366582.92506624158324201267.84RF00039

94.452.9590.4428.941317345548390.445004064156377452573899.33RF00038

2.420.0875.5924.1892184587675.581280324001967711.66RF00037

129.224.0446.2314.7944332510639346.236846016213938316506779.59RF00035

146.714.5840.9213.0961371011871640.927772832242901318103879.76RF00034

69.062.1653.4217.097516285210853.423658688114334195481043.12RF00033

1.920.0669.3422.1901139445969.331015043172703771.09RF00032

17.040.5387.2927.93366992235487.299028162821378808216.77RF00031

29.590.9289.6128.675510883482489.61156761648988140474331.65RF00027

142.024.4491.2429.199521856991191.2475240002351256865523155.4RF00026

147.974.6246.4214.8564352511280746.427839296244978363947892.8RF00021

63.191.9789.2428.557214734712689.243347648104614298747565.13RF00019

113.193.5491.4429.263819526245691.4459967681873995484002122.18RF00016

319.619.9942.1513.4900709322698642.15169329925291567138305228.57RF00015

63.972.0046.2914.813320336506946.293389344105917156896537.55RF00014

42.861.3443.3713.880311763764343.3722705287095498485321.59RF00008

98.343.0791.3229.225220366513891.3252102081628194758405111.36RF00006

102.453.2038.5712.342926888600938.575428032169626209366552.21RF00005

124.293.8853.7517.200927278725653.756584864205777353954593.78RF00001

Total Schedule
Size (MB)

Schedule
Size/Proc(MB)

Processor
Efficiency (%)Speedup

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

41.001.2885.327.29739473029185.3217200067875185279137.23RF00070

43.091.3586.5527.69869983193486.55228288071340197600839.56RF00069

40.281.2687.3827.96489162931387.38213417666693186504436.99RF00068

11.710.3779.7625.52644511444279.76620608193944950499.33RF00066

85.732.6890.4828.956515835067090.484541984141937410999192.16RF00065

41.491.308828.162010103230988219820868694193454741.33RF00063

95.322.9890.9429.103717545612790.9450501761578184593080103.82RF00060

50.881.5953.1417.006912804097353.14269587284246143275530.78RF00057

171.405.3654.5517.4573350011201154.5590806722837714953865127.61RF00056

82.582.5888.0328.172715574983388.034374944136717385167782.26RF00055

33.291.0486.3427.62988282649286.34176345655108152261529.77RF00054

33.281.0487.728.065610983512187.7176310455097154631834.53RF00053

19.540.6186.8627.79767572422286.8610354563235889946619.15RF00052

26.920.8488.428.28989453024588.4142617644568126080827.45RF00051

28.440.8985.7927.45607572423885.79150668847084129272524.9RF00049

13.060.4183.2526.64125041614283.256919682162457608010.99RF00048

19.070.6087.0827.86627672454987.0810102403157087972718.82RF00047

41.481.3087.2727.92799393004887.27219737668668191774437.9RF00046

37.601.1752.5316.811411663729752.53199184062245104641723.16RF00043

83.072.6049.3215.784321126756949.324401312137541217097552.24RF00042

163.115.1049.115.7135397612721949.186416002700504243415115.88RF00041

9.560.3082.9226.53714271366582.92506624158324201267.84RF00039

94.452.9590.4428.941317345548390.445004064156377452573899.33RF00038

2.420.0875.5924.1892184587675.581280324001967711.66RF00037

129.224.0446.2314.7944332510639346.236846016213938316506779.59RF00035

146.714.5840.9213.0961371011871640.927772832242901318103879.76RF00034

69.062.1653.4217.097516285210853.423658688114334195481043.12RF00033

1.920.0669.3422.1901139445969.331015043172703771.09RF00032

17.040.5387.2927.93366992235487.299028162821378808216.77RF00031

29.590.9289.6128.675510883482489.61156761648988140474331.65RF00027

142.024.4491.2429.199521856991191.2475240002351256865523155.4RF00026

147.974.6246.4214.8564352511280746.427839296244978363947892.8RF00021

63.191.9789.2428.557214734712689.243347648104614298747565.13RF00019

113.193.5491.4429.263819526245691.4459967681873995484002122.18RF00016

319.619.9942.1513.4900709322698642.15169329925291567138305228.57RF00015

63.972.0046.2914.813320336506946.293389344105917156896537.55RF00014

42.861.3443.3713.880311763764343.3722705287095498485321.59RF00008

98.343.0791.3229.225220366513891.3252102081628194758405111.36RF00006

102.453.2038.5712.342926888600938.575428032169626209366552.21RF00005

124.293.8853.7517.200927278725653.756584864205777353954593.78RF00001

Total Schedule
Size (MB)

Schedule
Size/Proc(MB)

Processor
Efficiency (%)Speedup

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

Table D.6: Results for processor array architecture using 32 processors

141

49.520.7773.4346.99804913145573.43252307239423185279137.36RF00070

50.470.7976.8349.17305183314276.83257184040185197600839.73RF00069

47.850.7576.4948.95674803073276.49243814438096186504436.82RF00068

14.980.2364.8341.49702451566964.83763520119304950499.4RF00066

98.321.5482.0352.50328515446682.03500998478281410999192.24RF00065

48.450.7678.3550.14935413464978.35246886438576193454741.35RF00063

109.021.7082.6752.91409406012882.675555392868034593080103.48RF00060

79.171.2435.5122.73046744316535.51403411263033143275531.02RF00057

267.414.1836.3523.2676182211663636.35136261762129094953865129.21RF00056

96.641.5178.2250.06168005123078.22492409676939385167782.29RF00055

39.750.6275.1648.10674332768575.16202566431651152261529.82RF00054

39.250.6177.3249.48575743671777.32199987231248154631834.38RF00053

23.670.3774.5647.72014032579574.5612063361884989946619.18RF00052

31.680.5078.149.98495043227578.1161433625224126080827.33RF00051

33.990.5374.6447.77293962533974.64173184027060129272524.98RF00049

15.970.2570.7945.30792781777570.798137601271557608011.01RF00048

23.380.3773.8347.25704082608073.8311914241861687972718.9RF00047

49.120.7776.6249.03744893132776.62250291239108191774438.16RF00046

61.080.9533.6221.51686173949233.61311251248633104641723.56RF00043

133.272.0831.9620.460011017043931.966790976106109217097552.62RF00042

259.774.0632.0520.5173204813105732.05132366082068224243415117.31RF00041

12.380.1966.5942.62312301471566.5963084898574201267.88RF00039

108.161.6982.1152.55659155858582.11551116886112452573899.46RF00038

3.420.0555.5535.5551100638955.541742082722967711.68RF00037

212.273.3229.2618.7274172211020629.2610816512169008316506780.51RF00035

247.943.8725.1716.1146192612326625.1712633728197402318103880.38RF00034

104.371.6336.7523.52488545465136.75531814483096195481043.39RF00033

2.810.0449.2231.507276486849.221429762234703771.12RF00032

19.870.3177.8349.81623772412777.8310124801582078808216.86RF00031

34.090.5380.8651.75385713657580.86173715227143140474331.61RF00027

159.772.5084.3353.973511287218584.3381409281272026865523155.65RF00026

234.133.6630.519.5243182211661030.511930112186408363947893.56RF00021

72.821.1480.551.52617644888580.5371072057980298747564.87RF00019

130.192.0382.6652.904910186515682.6666341121036585484002123.14RF00016

527.418.2426.5616.9994363123237926.56268745604199157138305238.35RF00015

104.001.6329.618.947610526731529.6529958482806156896538.15RF00014

68.541.0728.218.04845983824628.234923525456898485321.78RF00008

114.571.7981.552.164210536736881.55838080912204758405112.06RF00006

171.532.6823.9515.330813668741723.958740288136567209366553.12RF00005

188.482.9536.8523.586714119031036.859604224150066353954592.69RF00001

Total Schedule
Size (MB)

Schedule
Size/Proc(MB)

Processor
Efficiency (%)Speedup

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

49.520.7773.4346.99804913145573.43252307239423185279137.36RF00070

50.470.7976.8349.17305183314276.83257184040185197600839.73RF00069

47.850.7576.4948.95674803073276.49243814438096186504436.82RF00068

14.980.2364.8341.49702451566964.83763520119304950499.4RF00066

98.321.5482.0352.50328515446682.03500998478281410999192.24RF00065

48.450.7678.3550.14935413464978.35246886438576193454741.35RF00063

109.021.7082.6752.91409406012882.675555392868034593080103.48RF00060

79.171.2435.5122.73046744316535.51403411263033143275531.02RF00057

267.414.1836.3523.2676182211663636.35136261762129094953865129.21RF00056

96.641.5178.2250.06168005123078.22492409676939385167782.29RF00055

39.750.6275.1648.10674332768575.16202566431651152261529.82RF00054

39.250.6177.3249.48575743671777.32199987231248154631834.38RF00053

23.670.3774.5647.72014032579574.5612063361884989946619.18RF00052

31.680.5078.149.98495043227578.1161433625224126080827.33RF00051

33.990.5374.6447.77293962533974.64173184027060129272524.98RF00049

15.970.2570.7945.30792781777570.798137601271557608011.01RF00048

23.380.3773.8347.25704082608073.8311914241861687972718.9RF00047

49.120.7776.6249.03744893132776.62250291239108191774438.16RF00046

61.080.9533.6221.51686173949233.61311251248633104641723.56RF00043

133.272.0831.9620.460011017043931.966790976106109217097552.62RF00042

259.774.0632.0520.5173204813105732.05132366082068224243415117.31RF00041

12.380.1966.5942.62312301471566.5963084898574201267.88RF00039

108.161.6982.1152.55659155858582.11551116886112452573899.46RF00038

3.420.0555.5535.5551100638955.541742082722967711.68RF00037

212.273.3229.2618.7274172211020629.2610816512169008316506780.51RF00035

247.943.8725.1716.1146192612326625.1712633728197402318103880.38RF00034

104.371.6336.7523.52488545465136.75531814483096195481043.39RF00033

2.810.0449.2231.507276486849.221429762234703771.12RF00032

19.870.3177.8349.81623772412777.8310124801582078808216.86RF00031

34.090.5380.8651.75385713657580.86173715227143140474331.61RF00027

159.772.5084.3353.973511287218584.3381409281272026865523155.65RF00026

234.133.6630.519.5243182211661030.511930112186408363947893.56RF00021

72.821.1480.551.52617644888580.5371072057980298747564.87RF00019

130.192.0382.6652.904910186515682.6666341121036585484002123.14RF00016

527.418.2426.5616.9994363123237926.56268745604199157138305238.35RF00015

104.001.6329.618.947610526731529.6529958482806156896538.15RF00014

68.541.0728.218.04845983824628.234923525456898485321.78RF00008

114.571.7981.552.164210536736881.55838080912204758405112.06RF00006

171.532.6823.9515.330813668741723.958740288136567209366553.12RF00005

188.482.9536.8523.586714119031036.859604224150066353954592.69RF00001

Total Schedule
Size (MB)

Schedule
Size/Proc(MB)

Processor
Efficiency (%)Speedup

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

Table D.7: Results for processor array architecture using 64 processors

142

64.190.5058.8175.28352613340358.81315020824611185279137.52RF00070

65.230.5161.7279.00282823609261.72320153625012197600839.84RF00069

62.740.4960.5777.52972673423960.56307916824056186504436.98RF00068

21.460.1747.0160.17491371750047.01105305682274950499.42RF00066

122.000.9568.6387.85814766097768.63598784046780410999192.94RF00065

63.120.4962.4479.93383083943662.44309785624202193454741.71RF00063

134.911.0569.3688.79315196645069.366621184517284593080104.3RF00060

137.651.0821.227.14603684713321.2675584052780143275531.56RF00057

463.753.6221.7627.859496112304021.76227605761778174953865131.45RF00056

123.610.9763.4981.26784275470363.49606656047395385167782.26RF00055

52.630.4158.9475.44472433115158.94258329620182152261529.91RF00054

50.960.4061.8279.14063093951161.82250099219539154631834.6RF00053

31.260.2458.6375.05012212824158.6315340801198589946619.29RF00052

40.590.3263.2881.00872773546763.28199219215564126080827.68RF00051

45.250.3558.274.50502222840158.2222092817351129272525.06RF00049

23.320.1850.3464.43961531962650.341144320894057608011.1RF00048

31.070.2457.6873.84062252877057.6815249921191487972718.85RF00047

64.310.5060.7577.76782713471960.75315648024660191774438.19RF00046

108.510.8519.6425.14973364298919.64532582441608104641723.99RF00043

234.261.8318.8824.16965757360018.881149734489823217097553.51RF00042

462.413.6118.6923.9330108413875918.69226949121773044243415118.65RF00041

18.240.1446.9460.08811291645546.9489497669924201267.99RF00039

134.271.0568.6787.90934976357368.676589696514824525738100.41RF00038

5.310.0437.1147.511554690037.112607362037967711.69RF00037

376.142.9417.1421.945690411575017.1418460672144224316506781.98RF00035

453.453.5414.2918.295899612744014.2922255104173868318103882.33RF00034

180.851.4122.0228.18944625915422.02887628869346195481044.21RF00033

4.640.0430.9139.565540515130.92277121779703771.12RF00032

28.800.2355.7471.35932082667655.7414136321104478808216.91RF00031

42.730.3366.9785.73413093953766.97209728016385140474331.76RF00027

201.671.5869.3688.78345937585269.369898112773296865523156.99RF00026

424.533.3217.4622.358297212442617.4620835968162781363947895.94RF00021

93.130.7365.3683.66434065191865.36457062435708298747565.44RF00019

158.311.2470.5790.34175436944870.577769984607035484002122.89RF00016

951.967.4415.2719.5562187323976015.27467219203650157138305249.49RF00015

188.371.4716.9721.72285577128516.97924505672227156896538.81RF00014

128.771.0115.5819.94703134007415.5863198724937498485322.44RF00008

145.161.1366.7885.49075527068466.787124480556604758405111.95RF00006

319.632.5013.3417.08347018970813.3415687168122556209366554.27RF00005

317.312.4822.7229.09197449526122.7215573504121668353954593.7RF00001

Total Schedule
Size (MB)

Schedule
Size/Proc(MB)

Processor
Efficiency (%)Speedup

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

64.190.5058.8175.28352613340358.81315020824611185279137.52RF00070

65.230.5161.7279.00282823609261.72320153625012197600839.84RF00069

62.740.4960.5777.52972673423960.56307916824056186504436.98RF00068

21.460.1747.0160.17491371750047.01105305682274950499.42RF00066

122.000.9568.6387.85814766097768.63598784046780410999192.94RF00065

63.120.4962.4479.93383083943662.44309785624202193454741.71RF00063

134.911.0569.3688.79315196645069.366621184517284593080104.3RF00060

137.651.0821.227.14603684713321.2675584052780143275531.56RF00057

463.753.6221.7627.859496112304021.76227605761778174953865131.45RF00056

123.610.9763.4981.26784275470363.49606656047395385167782.26RF00055

52.630.4158.9475.44472433115158.94258329620182152261529.91RF00054

50.960.4061.8279.14063093951161.82250099219539154631834.6RF00053

31.260.2458.6375.05012212824158.6315340801198589946619.29RF00052

40.590.3263.2881.00872773546763.28199219215564126080827.68RF00051

45.250.3558.274.50502222840158.2222092817351129272525.06RF00049

23.320.1850.3464.43961531962650.341144320894057608011.1RF00048

31.070.2457.6873.84062252877057.6815249921191487972718.85RF00047

64.310.5060.7577.76782713471960.75315648024660191774438.19RF00046

108.510.8519.6425.14973364298919.64532582441608104641723.99RF00043

234.261.8318.8824.16965757360018.881149734489823217097553.51RF00042

462.413.6118.6923.9330108413875918.69226949121773044243415118.65RF00041

18.240.1446.9460.08811291645546.9489497669924201267.99RF00039

134.271.0568.6787.90934976357368.676589696514824525738100.41RF00038

5.310.0437.1147.511554690037.112607362037967711.69RF00037

376.142.9417.1421.945690411575017.1418460672144224316506781.98RF00035

453.453.5414.2918.295899612744014.2922255104173868318103882.33RF00034

180.851.4122.0228.18944625915422.02887628869346195481044.21RF00033

4.640.0430.9139.565540515130.92277121779703771.12RF00032

28.800.2355.7471.35932082667655.7414136321104478808216.91RF00031

42.730.3366.9785.73413093953766.97209728016385140474331.76RF00027

201.671.5869.3688.78345937585269.369898112773296865523156.99RF00026

424.533.3217.4622.358297212442617.4620835968162781363947895.94RF00021

93.130.7365.3683.66434065191865.36457062435708298747565.44RF00019

158.311.2470.5790.34175436944870.577769984607035484002122.89RF00016

951.967.4415.2719.5562187323976015.27467219203650157138305249.49RF00015

188.371.4716.9721.72285577128516.97924505672227156896538.81RF00014

128.771.0115.5819.94703134007415.5863198724937498485322.44RF00008

145.161.1366.7885.49075527068466.787124480556604758405111.95RF00006

319.632.5013.3417.08347018970813.3415687168122556209366554.27RF00005

317.312.4822.7229.09197449526122.7215573504121668353954593.7RF00001

Total Schedule
Size (MB)

Schedule
Size/Proc(MB)

Processor
Efficiency (%)Speedup

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

Table D.8: Results for processor array architecture using 128 processors

143

97.250.3840.24103.03071443695240.24460364817983185279137.8RF00070

97.960.3842.61109.08791624155642.61463718418114197600840.21RF00069

95.990.3741.04105.07351634166741.04454400017750186504437.24RF00068

36.510.1428.6473.3312691773528.64172825667514950499.54RF00066

174.140.6849.85127.63982706901549.85824320032200410999193.06RF00065

93.590.3743.66111.78541834689843.66443033617306193454742.18RF00063

191.750.7550.6129.53972937494550.69076992354574593080104.72RF00060

257.161.0011.7630.13112005127211.761217305647551143275532.73RF00057

865.583.3812.0930.951151313126112.09409740801600554953865136.14RF00056

180.080.7045.18115.67322426197245.18852428833298385167783.28RF00055

81.960.3239.24100.46351503849739.24387993615156152261530.39RF00054

75.090.2943.5111.36691824664543.5355456013885154631835.02RF00053

47.440.1940.05102.53941273243540.052245632877289946619.41RF00052

59.220.2344.97115.13281594057744.97280345610951126080827.64RF00051

71.390.2838.2597.93451343443038.25337920013200129272525.36RF00049

38.220.1531.8381.5068862211331.831809408706857608011.3RF00048

46.680.1839.81101.92761253208839.812209536863187972719.15RF00047

98.150.3841.27105.66731654221041.27464614418149191774438.67RF00046

194.870.7611.3429.04081714377611.34922444836033104641724.63RF00043

444.791.7410.3126.39623067833010.312105497682246217097555.51RF00042

841.843.2910.6427.259856414436810.64398504961556664243415122.13RF00041

30.990.1228.6373.3094691757828.63146713657314201268.09RF00039

192.320.7549.71127.26002807171749.719104128355634525738100.95RF00038

11.020.0418.5547.511527690018.555214722037967711.75RF00037

722.812.829.2523.68104621182159.2534215680133655316506785.69RF00035

871.473.407.7119.74045131314247.7141252864161144318103886.94RF00034

348.611.3611.8430.32522566564411.841650227264462195481045.73RF00033

9.620.0415.4539.565520515115.454554241779703771.16RF00032

43.010.1738.799.09371152932738.72035968795378808217.02RF00031

60.700.2448.88125.14501764511548.88287360011225140474332.05RF00027

286.871.1250.55129.42603258325750.5513579776530466865523157.81RF00026

823.173.229.3423.91054981275149.3438966528152213363947898.99RF00021

135.370.5346.61119.34662275813946.61640819225032298747565.38RF00019

225.120.8851.46131.74173017698851.4610656512416275484002123.49RF00016

1862.167.278.0920.73079612459108.09881497603443357138305273.44RF00015

355.931.399.3123.8392286732959.311684864065815156896540.7RF00014

267.011.047.7919.9470163416007.79126397444937498485323.56RF00008

207.090.8148.53124.26013047774948.539803264382944758405112.76RF00006

654.652.566.7517.2957357914836.7530989312121052209366557.82RF00005

614.142.4012.1731.168839410077512.1729071616113561353954596.2RF00001

Total Schedule
Size (MB)

Schedule
Size/Proc(MB)

Processor
Efficiency (%)Speedup

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

97.250.3840.24103.03071443695240.24460364817983185279137.8RF00070

97.960.3842.61109.08791624155642.61463718418114197600840.21RF00069

95.990.3741.04105.07351634166741.04454400017750186504437.24RF00068

36.510.1428.6473.3312691773528.64172825667514950499.54RF00066

174.140.6849.85127.63982706901549.85824320032200410999193.06RF00065

93.590.3743.66111.78541834689843.66443033617306193454742.18RF00063

191.750.7550.6129.53972937494550.69076992354574593080104.72RF00060

257.161.0011.7630.13112005127211.761217305647551143275532.73RF00057

865.583.3812.0930.951151313126112.09409740801600554953865136.14RF00056

180.080.7045.18115.67322426197245.18852428833298385167783.28RF00055

81.960.3239.24100.46351503849739.24387993615156152261530.39RF00054

75.090.2943.5111.36691824664543.5355456013885154631835.02RF00053

47.440.1940.05102.53941273243540.052245632877289946619.41RF00052

59.220.2344.97115.13281594057744.97280345610951126080827.64RF00051

71.390.2838.2597.93451343443038.25337920013200129272525.36RF00049

38.220.1531.8381.5068862211331.831809408706857608011.3RF00048

46.680.1839.81101.92761253208839.812209536863187972719.15RF00047

98.150.3841.27105.66731654221041.27464614418149191774438.67RF00046

194.870.7611.3429.04081714377611.34922444836033104641724.63RF00043

444.791.7410.3126.39623067833010.312105497682246217097555.51RF00042

841.843.2910.6427.259856414436810.64398504961556664243415122.13RF00041

30.990.1228.6373.3094691757828.63146713657314201268.09RF00039

192.320.7549.71127.26002807171749.719104128355634525738100.95RF00038

11.020.0418.5547.511527690018.555214722037967711.75RF00037

722.812.829.2523.68104621182159.2534215680133655316506785.69RF00035

871.473.407.7119.74045131314247.7141252864161144318103886.94RF00034

348.611.3611.8430.32522566564411.841650227264462195481045.73RF00033

9.620.0415.4539.565520515115.454554241779703771.16RF00032

43.010.1738.799.09371152932738.72035968795378808217.02RF00031

60.700.2448.88125.14501764511548.88287360011225140474332.05RF00027

286.871.1250.55129.42603258325750.5513579776530466865523157.81RF00026

823.173.229.3423.91054981275149.3438966528152213363947898.99RF00021

135.370.5346.61119.34662275813946.61640819225032298747565.38RF00019

225.120.8851.46131.74173017698851.4610656512416275484002123.49RF00016

1862.167.278.0920.73079612459108.09881497603443357138305273.44RF00015

355.931.399.3123.8392286732959.311684864065815156896540.7RF00014

267.011.047.7919.9470163416007.79126397444937498485323.56RF00008

207.090.8148.53124.26013047774948.539803264382944758405112.76RF00006

654.652.566.7517.2957357914836.7530989312121052209366557.82RF00005

614.142.4012.1731.168839410077512.1729071616113561353954596.2RF00001

Total Schedule
Size (MB)

Schedule
Size/Proc(MB)

Processor
Efficiency (%)Speedup

Average
Memory

Max Live
Memory

Schedule
Efficiency (%)

Total
Cycles

Cycles To
Compute

Num
ComputationsTimeCM

Table D.9: Results for processor array architecture using 256 processors

144

Appendix E

Additional Results for the Speedup

of the Processors Array

Architecture Over Infernal

This appendix contains additional results comparing the estimated performance of the pro-

cessor array architecture to the Infernal (version 0.81) software package.

The evaluation system for the Infernal software contains dual Intel Xeon 2.8 GHz

CPUs and 6 GBytes of DDR2 SDRAM running Linux CentOS 5.0. Infernal was run

with the –toponly and –noalign options to ensure that Infernal was not doing more

work than the processor array architecture. Results were collected for both the standard

version of Infernal as well as Infernal using the Query Dependent Banding (QDB)

heuristic [53]. The running time represents the time it took, in seconds, for Infernal to

process a randomly generated database of 1 million residues.

As described in Section 7.6.5, the results for the processor array architecture are an

estimate based on several factors including: the number of computations required to process

a database of 1 million residues, the efficiency of the schedule, the number of processors

available, and a clock frequency of 250 MHz.

145

Tables E.1 through E.9 compare the results for 40 different covariance models (CMs)

from the Rfam 8.0 database [33] for a single processor up to 256 processors. In those tables,

the columns are as follows:

– CM - the covariance model from the Rfam 8.0 database.

– Total Computations - the total number of computations required to compute the

results for a database of 1 million residues.

– Efficiency - the efficiency of the schedule being used to process the 1 million residues.

– Total Cycles - the total number of cycles required to process 1 million residues,

including idle time. This value is estimated as TotalComputations
Efficiency .

– Schedule Length - the length of the schedule after the computations have been

divided up over p processors. This value is estimated as TotalCycles
p .

– Time (seconds) - the estimated time to process the schedule on a processor ar-

ray running at 250 MHz. This value assumes that the I/O interface can provide p

instructions to the processor array architecture on each clock cycle.

– Infernal Time (seconds) - the time required for Infernal to process 1 million

residues.

– Infernal Time (QDB) (seconds) - the time required for Infernal to process 1

million residues when using the QDB heuristic.

– Speedup over Infernal - the estimated speedup of the processor array architecture

over the Infernal software package.

– Speedup over Infernal (w/QDB) - the estimated speedup of the processor array

architecture over the Infernal software package using the QDB heuristic.

146

9.3113.021009.891412.81108.50271242829252712428292599.9927124136529RF00070

7.5012.92907.671563.22121.04302591649493025916494999.9930259011817RF00069

6.2912.67825.741663.59131.32328303158283283031582899.9932830122196RF00068

11.2715.69528.69736.3146.92117297349351172973493599.9911729497999RF00066

5.8813.791328.443115.63225.99564979981645649799816499.9956497860699RF00065

7.0914.62959.061977.71135.23338082386323380823863299.9933808046397RF00063

6.1214.581483.863537.84242.57606435066166064350661699.9960643374584RF00060

6.0614.77679.651657.48112.20280507307052805073070599.9928050515347RF00057

5.9516.911555.484422.69261.61654030130576540301305799.9965402881033RF00056

7.7912.921391.262306.6178.52446302458674463024586799.9944630129995RF00055

6.9912.94798.551478.89114.27285676533532856765335399.9928567465732RF00054

10.2917.841187.22057.87115.34288346371492883463714999.9928834432030RF00053

10.5317.47839.011392.7479.71199283074821992830748299.9919928085927RF00052

10.0317.411009.41751.05100.59251479401622514794016299.9925147720759RF00051

6.8913.08687.811305.3899.84249589092622495890926299.9924958696885RF00049

9.1815.48539.42909.6758.77146936703131469367031399.9914693415254RF00048

10.7817.23849.751358.6578.84197093298641970932986499.9919709105827RF00047

6.2312.68833.521696.87133.85334632612103346326121099.9933463069269RF00046

7.2316.95657.61540.4790.89227231492262272314922699.9922722910361RF00043

6.9716.951003.692439.94143.98359949091443599490914499.9935994743344RF00042

5.0016.341186.923881.56237.56593896524545938965245499.9959389512497RF00041

10.4416.09484.91746.9846.43116068490791160684907999.9911606572815RF00039

5.8013.831385.393303.7238.93597315778485973157784899.9959731445866RF00038

12.8918.00220.66307.9817.114278342047427834204799.984277899983RF00037

5.4216.531061.473238.01195.92489798205544897982055499.9948979650328RF00035

4.3715.71875.23148.36200.43501087395295010873952999.9950108566254RF00034

6.1615.24852.812109.54138.38345951531293459515312999.9934594976155RF00033

10.9916.03149.62218.2113.613402410879340241087999.983401927493RF00032

10.6717.73745.921239.3969.89174714198231747141982399.9917471198130RF00031

11.8718.791267.832007.35106.84267107634172671076341799.9926710573271RF00027

6.2211.661621.653041.66260.77651922034906519220349099.9965192108534RF00026

5.6417.481223.243793.47217.07542663142335426631423399.9954266150218RF00021

8.5114.861458.672546.75171.35428371332644283713326499.9942836989875RF00019

7.5913.521885.213360248.49621216008016212160080199.9962121487523RF00016

4.7316.731597.325647.19337.65844123986388441239863899.9984412280385RF00015

6.4718.06797.992227.02123.33308325475603083254756099.9930832331395RF00014

11.1617.58851.321341.3376.28190711762281907117622899.9919070963221RF00008

11.1516.012301.543306.08206.44516103180915161031809199.9951610209630RF00006

6.5717.74873.882360.1133.04332588953283325889532899.9933258736474RF00005

6.1516.751284.433494.92208.71521784858445217848584499.9952178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

9.3113.021009.891412.81108.50271242829252712428292599.9927124136529RF00070

7.5012.92907.671563.22121.04302591649493025916494999.9930259011817RF00069

6.2912.67825.741663.59131.32328303158283283031582899.9932830122196RF00068

11.2715.69528.69736.3146.92117297349351172973493599.9911729497999RF00066

5.8813.791328.443115.63225.99564979981645649799816499.9956497860699RF00065

7.0914.62959.061977.71135.23338082386323380823863299.9933808046397RF00063

6.1214.581483.863537.84242.57606435066166064350661699.9960643374584RF00060

6.0614.77679.651657.48112.20280507307052805073070599.9928050515347RF00057

5.9516.911555.484422.69261.61654030130576540301305799.9965402881033RF00056

7.7912.921391.262306.6178.52446302458674463024586799.9944630129995RF00055

6.9912.94798.551478.89114.27285676533532856765335399.9928567465732RF00054

10.2917.841187.22057.87115.34288346371492883463714999.9928834432030RF00053

10.5317.47839.011392.7479.71199283074821992830748299.9919928085927RF00052

10.0317.411009.41751.05100.59251479401622514794016299.9925147720759RF00051

6.8913.08687.811305.3899.84249589092622495890926299.9924958696885RF00049

9.1815.48539.42909.6758.77146936703131469367031399.9914693415254RF00048

10.7817.23849.751358.6578.84197093298641970932986499.9919709105827RF00047

6.2312.68833.521696.87133.85334632612103346326121099.9933463069269RF00046

7.2316.95657.61540.4790.89227231492262272314922699.9922722910361RF00043

6.9716.951003.692439.94143.98359949091443599490914499.9935994743344RF00042

5.0016.341186.923881.56237.56593896524545938965245499.9959389512497RF00041

10.4416.09484.91746.9846.43116068490791160684907999.9911606572815RF00039

5.8013.831385.393303.7238.93597315778485973157784899.9959731445866RF00038

12.8918.00220.66307.9817.114278342047427834204799.984277899983RF00037

5.4216.531061.473238.01195.92489798205544897982055499.9948979650328RF00035

4.3715.71875.23148.36200.43501087395295010873952999.9950108566254RF00034

6.1615.24852.812109.54138.38345951531293459515312999.9934594976155RF00033

10.9916.03149.62218.2113.613402410879340241087999.983401927493RF00032

10.6717.73745.921239.3969.89174714198231747141982399.9917471198130RF00031

11.8718.791267.832007.35106.84267107634172671076341799.9926710573271RF00027

6.2211.661621.653041.66260.77651922034906519220349099.9965192108534RF00026

5.6417.481223.243793.47217.07542663142335426631423399.9954266150218RF00021

8.5114.861458.672546.75171.35428371332644283713326499.9942836989875RF00019

7.5913.521885.213360248.49621216008016212160080199.9962121487523RF00016

4.7316.731597.325647.19337.65844123986388441239863899.9984412280385RF00015

6.4718.06797.992227.02123.33308325475603083254756099.9930832331395RF00014

11.1617.58851.321341.3376.28190711762281907117622899.9919070963221RF00008

11.1516.012301.543306.08206.44516103180915161031809199.9951610209630RF00006

6.5717.74873.882360.1133.04332588953283325889532899.9933258736474RF00005

6.1516.751284.433494.92208.71521784858445217848584499.9952178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

Table E.1: Processor array architecture with 1 processor compared to Infernal

147

18.5525.951009.891412.8154.45136114696262722293925399.6327124136529RF00070

14.9125.69907.671563.2260.86152147085713042941714199.4330259011817RF00069

12.5325.24825.741663.5965.92164801388993296027779799.632830122196RF00068

22.3431.11528.69736.3123.6759170526441183410528899.1111729497999RF00066

11.7127.471328.443115.63113.41283518432845670368656899.6356497860699RF00065

14.1129.09959.061977.7167.98169946971643398939432999.4633808046397RF00063

12.2029.091483.863537.84121.61304033887226080677744399.7360643374584RF00060

11.7328.61679.651657.4857.94144858405362897168107196.8228050515347RF00057

11.5532.851555.484422.69134.62336561386836731227736797.1665402881033RF00056

15.5325.741391.262306.689.61224015460234480309204599.6144630129995RF00055

13.9025.74798.551478.8957.46143656200832873124016599.4228567465732RF00054

20.4535.451187.22057.8758.05145113655032902273100599.3528834432030RF00053

20.8934.68839.011392.7440.16100405679342008113586799.2319928085927RF00052

19.9834.661009.41751.0550.52126294889872525897797499.5525147720759RF00051

13.7226.04687.811305.3850.12125306762162506135243199.5924958696885RF00049

18.2430.77539.42909.6729.5773914959151478299183199.3914693415254RF00048

21.4434.28849.751358.6539.6499093186641981863732899.4419709105827RF00047

12.4025.25833.521696.8767.20168001448293360028965899.5933463069269RF00046

13.9932.77657.61540.4747.01117526611642350532232896.6722722910361RF00043

13.5732.981003.692439.9473.98184952438963699048779197.335994743344RF00042

9.8232.121186.923881.56120.84302099445236041988904598.2959389512497RF00041

20.7832.01484.91746.9823.3458341174801166823496099.4711606572815RF00039

11.5627.571385.393303.7119.84299607893305992157866099.6859731445866RF00038

25.2635.26220.66307.988.732183620584436724116997.954277899983RF00037

10.2331.211061.473238.01103.75259384547065187690941194.4148979650328RF00035

8.0929.11875.23148.36108.14270355405125407108102492.6750108566254RF00034

11.9629.59852.812109.5471.30178249224953564984499197.0434594976155RF00033

21.5531.43149.62218.216.9417355500343471100067983401927493RF00032

21.1535.14745.921239.3935.2788186894681763737893599.0517471198130RF00031

23.6837.491267.832007.3553.54133849588602676991772099.7726710573271RF00027

12.3923.241621.653041.66130.87327187133956543742678999.6265192108534RF00026

11.0034.111223.243793.47111.20277998393285559967865697.654266150218RF00021

16.9429.571458.672546.7586.11215282374134305647482699.4942836989875RF00019

15.1226.941885.213360124.72311799798196235995963899.6162121487523RF00016

8.7931.091597.325647.19181.65454135811039082716220692.9384412280385RF00015

12.6035.18797.992227.0263.31158273610513165472210397.430832331395RF00014

21.5533.95851.321341.3339.5198773288191975465763996.5319070963221RF00008

22.2231.912301.543306.08103.60258988965985179779319599.6351610209630RF00006

12.7334.39873.882360.168.63171566448603431328972096.9233258736474RF00005

11.9732.561284.433494.92107.33268328724545366574490997.2252178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

18.5525.951009.891412.8154.45136114696262722293925399.6327124136529RF00070

14.9125.69907.671563.2260.86152147085713042941714199.4330259011817RF00069

12.5325.24825.741663.5965.92164801388993296027779799.632830122196RF00068

22.3431.11528.69736.3123.6759170526441183410528899.1111729497999RF00066

11.7127.471328.443115.63113.41283518432845670368656899.6356497860699RF00065

14.1129.09959.061977.7167.98169946971643398939432999.4633808046397RF00063

12.2029.091483.863537.84121.61304033887226080677744399.7360643374584RF00060

11.7328.61679.651657.4857.94144858405362897168107196.8228050515347RF00057

11.5532.851555.484422.69134.62336561386836731227736797.1665402881033RF00056

15.5325.741391.262306.689.61224015460234480309204599.6144630129995RF00055

13.9025.74798.551478.8957.46143656200832873124016599.4228567465732RF00054

20.4535.451187.22057.8758.05145113655032902273100599.3528834432030RF00053

20.8934.68839.011392.7440.16100405679342008113586799.2319928085927RF00052

19.9834.661009.41751.0550.52126294889872525897797499.5525147720759RF00051

13.7226.04687.811305.3850.12125306762162506135243199.5924958696885RF00049

18.2430.77539.42909.6729.5773914959151478299183199.3914693415254RF00048

21.4434.28849.751358.6539.6499093186641981863732899.4419709105827RF00047

12.4025.25833.521696.8767.20168001448293360028965899.5933463069269RF00046

13.9932.77657.61540.4747.01117526611642350532232896.6722722910361RF00043

13.5732.981003.692439.9473.98184952438963699048779197.335994743344RF00042

9.8232.121186.923881.56120.84302099445236041988904598.2959389512497RF00041

20.7832.01484.91746.9823.3458341174801166823496099.4711606572815RF00039

11.5627.571385.393303.7119.84299607893305992157866099.6859731445866RF00038

25.2635.26220.66307.988.732183620584436724116997.954277899983RF00037

10.2331.211061.473238.01103.75259384547065187690941194.4148979650328RF00035

8.0929.11875.23148.36108.14270355405125407108102492.6750108566254RF00034

11.9629.59852.812109.5471.30178249224953564984499197.0434594976155RF00033

21.5531.43149.62218.216.9417355500343471100067983401927493RF00032

21.1535.14745.921239.3935.2788186894681763737893599.0517471198130RF00031

23.6837.491267.832007.3553.54133849588602676991772099.7726710573271RF00027

12.3923.241621.653041.66130.87327187133956543742678999.6265192108534RF00026

11.0034.111223.243793.47111.20277998393285559967865697.654266150218RF00021

16.9429.571458.672546.7586.11215282374134305647482699.4942836989875RF00019

15.1226.941885.213360124.72311799798196235995963899.6162121487523RF00016

8.7931.091597.325647.19181.65454135811039082716220692.9384412280385RF00015

12.6035.18797.992227.0263.31158273610513165472210397.430832331395RF00014

21.5533.95851.321341.3339.5198773288191975465763996.5319070963221RF00008

22.2231.912301.543306.08103.60258988965985179779319599.6351610209630RF00006

12.7334.39873.882360.168.63171566448603431328972096.9233258736474RF00005

11.9732.561284.433494.92107.33268328724545366574490997.2252178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

Table E.2: Processor array architecture with 2 processors compared to Infernal

148

36.6951.331009.891412.8127.5368812605582752504223298.5427124136529RF00070

29.5850.95907.671563.2230.6876709193913068367756598.6130259011817RF00069

24.8350.02825.741663.5933.2683146439973325857598898.7132830122196RF00068

43.9661.23528.69736.3112.0330063637211202545488397.5311729497999RF00066

23.2854.601328.443115.6357.0714266840783570673631319956497860699RF00065

27.9657.66959.061977.7134.3085749767523429990700698.5633808046397RF00063

24.2657.831483.863537.8461.17152934038196117361527799.1360643374584RF00060

22.1654.04679.651657.4830.6776675187173067007487091.4528050515347RF00057

21.9162.301555.484422.6970.99177466325547098653021792.1365402881033RF00056

30.7951.051391.262306.645.18112955099124518203964998.7744630129995RF00055

27.5250.97798.551478.8929.0272538433792901537351598.4528567465732RF00054

40.6070.371187.22057.8729.2473109529202924381167998.628834432030RF00053

41.4168.74839.011392.7420.2650651598582026063943198.3519928085927RF00052

39.5768.641009.41751.0525.5163776233692551049347798.5725147720759RF00051

27.1751.56687.811305.3825.3263296209072531848362798.5724958696885RF00049

36.0160.73539.42909.6714.9837450252771498010110998.0814693415254RF00048

42.4867.92849.751358.6520.0050008556822000342272798.5219709105827RF00047

24.5950.05833.521696.8733.9084752958503390118339998.733463069269RF00046

26.5462.18657.61540.4724.7761934342412477373696691.7222722910361RF00043

25.6862.431003.692439.9439.0897709195863908367834392.0935994743344RF00042

18.4660.361186.923881.5664.30160755172436430206897292.3659389512497RF00041

41.0263.19484.91746.9811.8229552522511182100900498.1811606572815RF00039

22.9754.771385.393303.760.32150801596096032063843799.0259731445866RF00038

49.3268.83220.66307.984.471118599386447439754395.64277899983RF00037

18.6056.751061.473238.0157.06142640423835705616953185.8448979650328RF00035

15.0254.05875.23148.3658.25145624056035824962241186.0250108566254RF00034

22.5755.84852.812109.5437.7894443730983777749239091.5734594976155RF00033

41.8561.04149.62218.213.57893684520357473808295.163401927493RF00032

41.9169.63745.921239.3917.8044499034031779961361198.1517471198130RF00031

47.0274.441267.832007.3526.9767416130592696645223699.0526710573271RF00027

24.6146.151621.653041.6665.91164767932576590717302898.9165192108534RF00026

20.4463.381223.243793.4759.85149635769325985430772690.6654266150218RF00021

33.6158.681458.672546.7543.40108504888384340195535298.6942836989875RF00019

30.0553.561885.21336062.73156825660716273026428599.0262121487523RF00016

15.3154.131597.325647.19104.322608055368010432221472280.9184412280385RF00015

23.4765.50797.992227.0234.0084997338813399893552590.6830832331395RF00014

39.6862.52851.321341.3321.4553637295862145491834288.8819070963221RF00008

44.2063.492301.543306.0852.07130174642885206985715399.1151610209630RF00006

23.1362.46873.882360.137.7894457852053778314082288.0233258736474RF00005

22.8062.031284.433494.9256.34140859674175634386966892.652178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

36.6951.331009.891412.8127.5368812605582752504223298.5427124136529RF00070

29.5850.95907.671563.2230.6876709193913068367756598.6130259011817RF00069

24.8350.02825.741663.5933.2683146439973325857598898.7132830122196RF00068

43.9661.23528.69736.3112.0330063637211202545488397.5311729497999RF00066

23.2854.601328.443115.6357.0714266840783570673631319956497860699RF00065

27.9657.66959.061977.7134.3085749767523429990700698.5633808046397RF00063

24.2657.831483.863537.8461.17152934038196117361527799.1360643374584RF00060

22.1654.04679.651657.4830.6776675187173067007487091.4528050515347RF00057

21.9162.301555.484422.6970.99177466325547098653021792.1365402881033RF00056

30.7951.051391.262306.645.18112955099124518203964998.7744630129995RF00055

27.5250.97798.551478.8929.0272538433792901537351598.4528567465732RF00054

40.6070.371187.22057.8729.2473109529202924381167998.628834432030RF00053

41.4168.74839.011392.7420.2650651598582026063943198.3519928085927RF00052

39.5768.641009.41751.0525.5163776233692551049347798.5725147720759RF00051

27.1751.56687.811305.3825.3263296209072531848362798.5724958696885RF00049

36.0160.73539.42909.6714.9837450252771498010110998.0814693415254RF00048

42.4867.92849.751358.6520.0050008556822000342272798.5219709105827RF00047

24.5950.05833.521696.8733.9084752958503390118339998.733463069269RF00046

26.5462.18657.61540.4724.7761934342412477373696691.7222722910361RF00043

25.6862.431003.692439.9439.0897709195863908367834392.0935994743344RF00042

18.4660.361186.923881.5664.30160755172436430206897292.3659389512497RF00041

41.0263.19484.91746.9811.8229552522511182100900498.1811606572815RF00039

22.9754.771385.393303.760.32150801596096032063843799.0259731445866RF00038

49.3268.83220.66307.984.471118599386447439754395.64277899983RF00037

18.6056.751061.473238.0157.06142640423835705616953185.8448979650328RF00035

15.0254.05875.23148.3658.25145624056035824962241186.0250108566254RF00034

22.5755.84852.812109.5437.7894443730983777749239091.5734594976155RF00033

41.8561.04149.62218.213.57893684520357473808295.163401927493RF00032

41.9169.63745.921239.3917.8044499034031779961361198.1517471198130RF00031

47.0274.441267.832007.3526.9767416130592696645223699.0526710573271RF00027

24.6146.151621.653041.6665.91164767932576590717302898.9165192108534RF00026

20.4463.381223.243793.4759.85149635769325985430772690.6654266150218RF00021

33.6158.681458.672546.7543.40108504888384340195535298.6942836989875RF00019

30.0553.561885.21336062.73156825660716273026428599.0262121487523RF00016

15.3154.131597.325647.19104.322608055368010432221472280.9184412280385RF00015

23.4765.50797.992227.0234.0084997338813399893552590.6830832331395RF00014

39.6862.52851.321341.3321.4553637295862145491834288.8819070963221RF00008

44.2063.492301.543306.0852.07130174642885206985715399.1151610209630RF00006

23.1362.46873.882360.137.7894457852053778314082288.0233258736474RF00005

22.8062.031284.433494.9256.34140859674175634386966892.652178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

Table E.3: Processor array architecture with 4 processors compared to Infernal

149

72.19101.001009.891412.8113.9934970952522797676202096.9527124136529RF00070

58.20100.23907.671563.2215.603899246843311939747459730259011817RF00069

48.7898.28825.741663.5916.9342317293193385383455296.9732830122196RF00068

85.15118.59528.69736.316.2115522394801241791584194.4511729497999RF00066

45.94107.741328.443115.6328.9272292126555783370124297.6956497860699RF00065

55.09113.60959.061977.7117.4143523853163481908252597.0933808046397RF00063

47.93114.291483.863537.8430.9677390715286191257222797.9560643374584RF00060

40.3298.34679.651657.4816.8542137199083370975926383.2128050515347RF00057

40.15114.161555.484422.6938.7496853955757748316460384.465402881033RF00056

60.53100.351391.262306.622.9857461823794596945902997.0844630129995RF00055

54.01100.02798.551478.8914.7936965103452957208275896.628567465732RF00054

79.77138.281187.22057.8714.8837206109742976488779096.8728834432030RF00053

81.07134.58839.011392.7410.3525872928452069834276396.2719928085927RF00052

77.72134.821009.41751.0512.9932469434802597554783796.8125147720759RF00051

53.28101.12687.811305.3812.9132271528952581722315796.6724958696885RF00049

70.15118.30539.42909.677.6919223765931537901274495.5414693415254RF00048

83.14132.94849.751358.6510.2225550927752044074219796.4219709105827RF00047

48.2998.32833.521696.8717.2643147820463451825636696.9433463069269RF00046

47.48111.21657.61540.4713.8534628206032770256482182.0222722910361RF00043

45.99111.791003.692439.9421.8354565243814365219505182.4535994743344RF00042

32.85107.421186.923881.5636.1390332369217226589537182.1859389512497RF00041

80.00123.23484.91746.986.0615153638001212291040495.7411606572815RF00039

45.34108.131385.393303.730.5576385975226110878017697.7459731445866RF00038

94.56131.98220.66307.982.33583392195466713755891.664277899983RF00037

31.4495.921061.473238.0133.7684396418466751713477072.5448979650328RF00035

24.8889.51875.23148.3635.1787934993867034799508871.2250108566254RF00034

41.18101.87852.812109.5420.7151771502784141720222283.5234594976155RF00033

79.51115.96149.62218.211.88470431510376345207890.393401927493RF00032

82.28136.71745.921239.399.0722664525641813162051396.3517471198130RF00031

92.35146.221267.832007.3513.7334320714492745657159397.2826710573271RF00027

48.6891.311621.653041.6633.3183279161896662332951497.8565192108534RF00026

35.74110.841223.243793.4734.2285559724916844777992679.2854266150218RF00021

66.17115.531458.672546.7522.0455108689304408695143797.1642836989875RF00019

59.42105.901885.21336031.7379320864026345669121897.8962121487523RF00016

27.2496.311597.325647.1958.641465935534611727484276871.9784412280385RF00015

41.26115.16797.992227.0219.3448348099933867847994579.7130832331395RF00014

68.49107.91851.321341.3312.4331074237582485939006176.7119070963221RF00008

87.51125.712301.543306.0826.3065747199105259775928198.1251610209630RF00006

39.41106.42873.882360.122.1855440891084435271286774.9833258736474RF00005

41.23112.191284.433494.9231.1577876451486230116118883.7552178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

72.19101.001009.891412.8113.9934970952522797676202096.9527124136529RF00070

58.20100.23907.671563.2215.603899246843311939747459730259011817RF00069

48.7898.28825.741663.5916.9342317293193385383455296.9732830122196RF00068

85.15118.59528.69736.316.2115522394801241791584194.4511729497999RF00066

45.94107.741328.443115.6328.9272292126555783370124297.6956497860699RF00065

55.09113.60959.061977.7117.4143523853163481908252597.0933808046397RF00063

47.93114.291483.863537.8430.9677390715286191257222797.9560643374584RF00060

40.3298.34679.651657.4816.8542137199083370975926383.2128050515347RF00057

40.15114.161555.484422.6938.7496853955757748316460384.465402881033RF00056

60.53100.351391.262306.622.9857461823794596945902997.0844630129995RF00055

54.01100.02798.551478.8914.7936965103452957208275896.628567465732RF00054

79.77138.281187.22057.8714.8837206109742976488779096.8728834432030RF00053

81.07134.58839.011392.7410.3525872928452069834276396.2719928085927RF00052

77.72134.821009.41751.0512.9932469434802597554783796.8125147720759RF00051

53.28101.12687.811305.3812.9132271528952581722315796.6724958696885RF00049

70.15118.30539.42909.677.6919223765931537901274495.5414693415254RF00048

83.14132.94849.751358.6510.2225550927752044074219796.4219709105827RF00047

48.2998.32833.521696.8717.2643147820463451825636696.9433463069269RF00046

47.48111.21657.61540.4713.8534628206032770256482182.0222722910361RF00043

45.99111.791003.692439.9421.8354565243814365219505182.4535994743344RF00042

32.85107.421186.923881.5636.1390332369217226589537182.1859389512497RF00041

80.00123.23484.91746.986.0615153638001212291040495.7411606572815RF00039

45.34108.131385.393303.730.5576385975226110878017697.7459731445866RF00038

94.56131.98220.66307.982.33583392195466713755891.664277899983RF00037

31.4495.921061.473238.0133.7684396418466751713477072.5448979650328RF00035

24.8889.51875.23148.3635.1787934993867034799508871.2250108566254RF00034

41.18101.87852.812109.5420.7151771502784141720222283.5234594976155RF00033

79.51115.96149.62218.211.88470431510376345207890.393401927493RF00032

82.28136.71745.921239.399.0722664525641813162051396.3517471198130RF00031

92.35146.221267.832007.3513.7334320714492745657159397.2826710573271RF00027

48.6891.311621.653041.6633.3183279161896662332951497.8565192108534RF00026

35.74110.841223.243793.4734.2285559724916844777992679.2854266150218RF00021

66.17115.531458.672546.7522.0455108689304408695143797.1642836989875RF00019

59.42105.901885.21336031.7379320864026345669121897.8962121487523RF00016

27.2496.311597.325647.1958.641465935534611727484276871.9784412280385RF00015

41.26115.16797.992227.0219.3448348099933867847994579.7130832331395RF00014

68.49107.91851.321341.3312.4331074237582485939006176.7119070963221RF00008

87.51125.712301.543306.0826.3065747199105259775928198.1251610209630RF00006

39.41106.42873.882360.122.1855440891084435271286774.9833258736474RF00005

41.23112.191284.433494.9231.1577876451486230116118883.7552178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

Table E.4: Processor array architecture with 8 processors compared to Infernal

150

138.21193.351009.891412.817.3118267597392922815583192.827124136529RF00070

112.02192.92907.671563.228.1020257223843241155814993.3530259011817RF00069

94.17189.73825.741663.598.7721920498703507279791293.632830122196RF00068

162.48226.29528.69736.313.258134727161301556346390.1111729497999RF00066

89.53209.981328.443115.6314.8437095119445935219110895.1956497860699RF00065

106.60219.82959.061977.719.0022492596043598815366893.9433808046397RF00063

93.58223.131483.863537.8415.8639639584816342333570195.6160643374584RF00060

67.88165.54679.651657.4810.0125031681554005069048370.0328050515347RF00057

68.64195.161555.484422.6922.6656653324009064531840672.1565402881033RF00056

117.16194.251391.262306.611.8729686044324749767091893.9644630129995RF00055

104.17192.91798.551478.897.6719165117183066418748993.1628567465732RF00054

155.06268.781187.22057.877.6619140745593062519295194.1528834432030RF00053

156.32259.48839.011392.745.3713418456332146953012992.8219928085927RF00052

150.74261.491009.41751.056.7016740839992678534398693.8825147720759RF00051

102.48194.50687.811305.386.7116778399392684543902792.9724958696885RF00049

133.79225.61539.42909.674.0310079915481612786476491.114693415254RF00048

160.39256.45849.751358.655.301324482058211917129279319709105827RF00047

93.15189.63833.521696.878.9522371076233579372197193.4833463069269RF00046

77.96182.63657.61540.478.4421087621363374019417667.3422722910361RF00043

74.61181.371003.692439.9413.4533632509305381201487766.8835994743344RF00042

53.32174.361186.923881.5622.2655655253008904840479566.6959389512497RF00041

152.41234.78484.91746.983.187954195751272671320591.1911606572815RF00039

88.39210.791385.393303.715.6739183246086269319372795.2759731445866RF00038

178.25248.78220.66307.981.24309489184495182693786.394277899983RF00037

55.49169.271061.473238.0119.1347823708627651793379964.0148979650328RF00035

37.10133.44875.23148.3623.5958983268599437322973953.0950108566254RF00034

68.95170.55852.812109.5412.3730922950944947672151169.9234594976155RF00033

142.30207.53149.62218.211.05262865449420584718580.883401927493RF00032

159.57265.14745.921239.394.6711686305971869808955493.4317471198130RF00031

180.06285.081267.832007.357.0417603301472816528235994.8326710573271RF00027

94.63177.501621.653041.6617.1442840629126854500658995.165192108534RF00026

57.24177.521223.243793.4721.3753422548408547607744563.4854266150218RF00021

128.40224.181458.672546.7511.3628401269504544203119294.2642836989875RF00019

116.22207.141885.21336016.2240552606816488417088995.7462121487523RF00016

46.14163.121597.325647.1934.62865509369713848149914660.9584412280385RF00015

66.17184.68797.992227.0212.0630147578974823612635363.9130832331395RF00014

106.53167.85851.321341.337.9919977927723196468434759.6619070963221RF00008

169.72243.802301.543306.0813.5633901919755424307159995.1451610209630RF00006

59.76161.40873.882360.114.6236557104535849136724256.8633258736474RF00005

70.31191.311284.433494.9218.2745670022957307203671471.452178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

138.21193.351009.891412.817.3118267597392922815583192.827124136529RF00070

112.02192.92907.671563.228.1020257223843241155814993.3530259011817RF00069

94.17189.73825.741663.598.7721920498703507279791293.632830122196RF00068

162.48226.29528.69736.313.258134727161301556346390.1111729497999RF00066

89.53209.981328.443115.6314.8437095119445935219110895.1956497860699RF00065

106.60219.82959.061977.719.0022492596043598815366893.9433808046397RF00063

93.58223.131483.863537.8415.8639639584816342333570195.6160643374584RF00060

67.88165.54679.651657.4810.0125031681554005069048370.0328050515347RF00057

68.64195.161555.484422.6922.6656653324009064531840672.1565402881033RF00056

117.16194.251391.262306.611.8729686044324749767091893.9644630129995RF00055

104.17192.91798.551478.897.6719165117183066418748993.1628567465732RF00054

155.06268.781187.22057.877.6619140745593062519295194.1528834432030RF00053

156.32259.48839.011392.745.3713418456332146953012992.8219928085927RF00052

150.74261.491009.41751.056.7016740839992678534398693.8825147720759RF00051

102.48194.50687.811305.386.7116778399392684543902792.9724958696885RF00049

133.79225.61539.42909.674.0310079915481612786476491.114693415254RF00048

160.39256.45849.751358.655.301324482058211917129279319709105827RF00047

93.15189.63833.521696.878.9522371076233579372197193.4833463069269RF00046

77.96182.63657.61540.478.4421087621363374019417667.3422722910361RF00043

74.61181.371003.692439.9413.4533632509305381201487766.8835994743344RF00042

53.32174.361186.923881.5622.2655655253008904840479566.6959389512497RF00041

152.41234.78484.91746.983.187954195751272671320591.1911606572815RF00039

88.39210.791385.393303.715.6739183246086269319372795.2759731445866RF00038

178.25248.78220.66307.981.24309489184495182693786.394277899983RF00037

55.49169.271061.473238.0119.1347823708627651793379964.0148979650328RF00035

37.10133.44875.23148.3623.5958983268599437322973953.0950108566254RF00034

68.95170.55852.812109.5412.3730922950944947672151169.9234594976155RF00033

142.30207.53149.62218.211.05262865449420584718580.883401927493RF00032

159.57265.14745.921239.394.6711686305971869808955493.4317471198130RF00031

180.06285.081267.832007.357.0417603301472816528235994.8326710573271RF00027

94.63177.501621.653041.6617.1442840629126854500658995.165192108534RF00026

57.24177.521223.243793.4721.3753422548408547607744563.4854266150218RF00021

128.40224.181458.672546.7511.3628401269504544203119294.2642836989875RF00019

116.22207.141885.21336016.2240552606816488417088995.7462121487523RF00016

46.14163.121597.325647.1934.62865509369713848149914660.9584412280385RF00015

66.17184.68797.992227.0212.0630147578974823612635363.9130832331395RF00014

106.53167.85851.321341.337.9919977927723196468434759.6619070963221RF00008

169.72243.802301.543306.0813.5633901919755424307159995.1451610209630RF00006

59.76161.40873.882360.114.6236557104535849136724256.8633258736474RF00005

70.31191.311284.433494.9218.2745670022957307203671471.452178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

Table E.5: Processor array architecture with 16 processors compared to Infernal

151

254.08355.451009.891412.813.979936634883179723160485.327124136529RF00070

207.72357.73907.671563.224.3710924439093495820507686.5530259011817RF00069

175.84354.26825.741663.594.7011739880343756761710187.3832830122196RF00068

287.64400.59528.69736.311.844595138751470444399379.7611729497999RF00066

170.21399.211328.443115.637.8019511324616243623874890.4856497860699RF00065

199.72411.85959.061977.714.801200492901384157728168833808046397RF00063

178.03424.471483.863537.848.3320837033306667850655490.9460643374584RF00060

103.02251.23679.651657.486.6016493704205277985343653.1428050515347RF00057

103.80295.121555.484422.6914.99374645674711988661590854.5565402881033RF00056

219.56364.011391.262306.66.3415841664515069332642488.0344630129995RF00055

193.08357.59798.551478.894.1410339421993308615037386.3428567465732RF00054

288.88500.751187.22057.874.1110274023213287687425987.728834432030RF00053

292.58485.68839.011392.742.877169064812294100737786.8619928085927RF00052

283.88492.451009.41751.053.568889407582844610424588.425147720759RF00051

189.16358.99687.811305.383.649090528032908968968185.7924958696885RF00049

244.51412.33539.42909.672.215515386951764923824283.2514693415254RF00048

300.36480.24849.751358.652.837072835902263307488687.0819709105827RF00047

173.91354.05833.521696.874.7911982006153834241968687.2733463069269RF00046

121.63284.92657.61540.475.4113516481054325273937052.5322722910361RF00043

110.03267.491003.692439.949.1222804283767297370804249.3235994743344RF00042

78.51256.751186.923881.5615.12377953555112094513762949.159389512497RF00041

277.17426.96484.91746.981.754373813111399620196382.9211606572815RF00039

167.81400.181385.393303.78.2620638897596604447228890.4459731445866RF00038

311.90435.32220.66307.980.71176869908565983704475.584277899983RF00037

80.15244.511061.473238.0113.24331070667110594261348046.2348979650328RF00035

57.18205.71875.23148.3615.30382624189112243974050440.9250108566254RF00034

105.37260.64852.812109.548.0920234099506474911838953.4234594976155RF00033

243.95355.78149.62218.210.61153330122490656390969.333401927493RF00032

298.15495.39745.921239.392.506254614532001476649887.2917471198130RF00031

340.27538.751267.832007.353.739314853772980753207489.6126710573271RF00027

181.58340.591621.653041.668.9322326477567144472818991.2465192108534RF00026

83.72259.631223.243793.4714.61365272518411688720589646.4254266150218RF00021

243.10424.451458.672546.756.0015000456434800146059289.2442836989875RF00019

222.02395.701885.2133608.4921228118886792998042191.4462121487523RF00016

63.82225.621597.325647.1925.03625740489420023695659742.1584412280385RF00015

95.85267.49797.992227.028.3320814154846660529547846.2930832331395RF00014

154.90244.06851.321341.335.5013739726894396712603843.3719070963221RF00008

325.82468.032301.543306.087.0617659536595651051709591.3251610209630RF00006

81.08218.97873.882360.110.7826945793308622653856338.5733258736474RF00005

105.85288.031284.433494.9212.1330334695419707102531653.7552178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

254.08355.451009.891412.813.979936634883179723160485.327124136529RF00070

207.72357.73907.671563.224.3710924439093495820507686.5530259011817RF00069

175.84354.26825.741663.594.7011739880343756761710187.3832830122196RF00068

287.64400.59528.69736.311.844595138751470444399379.7611729497999RF00066

170.21399.211328.443115.637.8019511324616243623874890.4856497860699RF00065

199.72411.85959.061977.714.801200492901384157728168833808046397RF00063

178.03424.471483.863537.848.3320837033306667850655490.9460643374584RF00060

103.02251.23679.651657.486.6016493704205277985343653.1428050515347RF00057

103.80295.121555.484422.6914.99374645674711988661590854.5565402881033RF00056

219.56364.011391.262306.66.3415841664515069332642488.0344630129995RF00055

193.08357.59798.551478.894.1410339421993308615037386.3428567465732RF00054

288.88500.751187.22057.874.1110274023213287687425987.728834432030RF00053

292.58485.68839.011392.742.877169064812294100737786.8619928085927RF00052

283.88492.451009.41751.053.568889407582844610424588.425147720759RF00051

189.16358.99687.811305.383.649090528032908968968185.7924958696885RF00049

244.51412.33539.42909.672.215515386951764923824283.2514693415254RF00048

300.36480.24849.751358.652.837072835902263307488687.0819709105827RF00047

173.91354.05833.521696.874.7911982006153834241968687.2733463069269RF00046

121.63284.92657.61540.475.4113516481054325273937052.5322722910361RF00043

110.03267.491003.692439.949.1222804283767297370804249.3235994743344RF00042

78.51256.751186.923881.5615.12377953555112094513762949.159389512497RF00041

277.17426.96484.91746.981.754373813111399620196382.9211606572815RF00039

167.81400.181385.393303.78.2620638897596604447228890.4459731445866RF00038

311.90435.32220.66307.980.71176869908565983704475.584277899983RF00037

80.15244.511061.473238.0113.24331070667110594261348046.2348979650328RF00035

57.18205.71875.23148.3615.30382624189112243974050440.9250108566254RF00034

105.37260.64852.812109.548.0920234099506474911838953.4234594976155RF00033

243.95355.78149.62218.210.61153330122490656390969.333401927493RF00032

298.15495.39745.921239.392.506254614532001476649887.2917471198130RF00031

340.27538.751267.832007.353.739314853772980753207489.6126710573271RF00027

181.58340.591621.653041.668.9322326477567144472818991.2465192108534RF00026

83.72259.631223.243793.4714.61365272518411688720589646.4254266150218RF00021

243.10424.451458.672546.756.0015000456434800146059289.2442836989875RF00019

222.02395.701885.2133608.4921228118886792998042191.4462121487523RF00016

63.82225.621597.325647.1925.03625740489420023695659742.1584412280385RF00015

95.85267.49797.992227.028.3320814154846660529547846.2930832331395RF00014

154.90244.06851.321341.335.5013739726894396712603843.3719070963221RF00008

325.82468.032301.543306.087.0617659536595651051709591.3251610209630RF00006

81.08218.97873.882360.110.7826945793308622653856338.5733258736474RF00005

105.85288.031284.433494.9212.1330334695419707102531653.7552178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

Table E.6: Processor array architecture with 32 processors compared to Infernal

152

437.46611.991009.891412.812.315771373213693678855373.4327124136529RF00070

368.76635.08907.671563.222.466153610663938310824276.8330259011817RF00069

307.84620.19825.741663.592.686705988364291832549376.4932830122196RF00068

467.59651.22528.69736.311.132826647691809054520364.8311729497999RF00066

308.63723.831328.443115.634.3010760872796886958587982.0356497860699RF00065

355.65733.41959.061977.712.706741522424314574350578.3533808046397RF00063

323.68771.731483.863537.844.5811460777617334897672582.6760643374584RF00060

137.69335.78679.651657.484.9412340617447897995160935.5128050515347RF00057

138.34393.351555.484422.6911.24281090865417989815383836.3565402881033RF00056

390.14646.831391.262306.63.578915071475705645737978.2244630129995RF00055

336.18622.60798.551478.892.385938394523800572495675.1628567465732RF00054

509.36882.921187.22057.872.335826863123729192394677.3228834432030RF00053

502.27833.76839.011392.741.674176083272672693294174.5619928085927RF00052

501.58870.111009.41751.052.015031107903219909053578.125147720759RF00051

329.13624.65687.811305.382.095224485783343670897874.6424958696885RF00049

415.83701.24539.42909.671.303243069972075564782270.7914693415254RF00048

509.36814.41849.751358.651.674170665612669225987273.8319709105827RF00047

305.36621.65833.521696.872.736824027154367377378376.6233463069269RF00046

155.67364.67657.61540.474.2210560639786758809458733.6122722910361RF00043

142.63346.721003.692439.947.04175928613711259431277431.9635994743344RF00042

102.51335.241186.923881.5611.58289461618918525543606632.0559389512497RF00041

445.18685.77484.91746.981.092723135161742806502666.5911606572815RF00039

304.74726.711385.393303.74.5511365205567273731556182.1159731445866RF00038

458.45639.87220.66307.980.48120329890770111293955.544277899983RF00037

101.46309.511061.473238.0110.46261541153616738633827629.2648979650328RF00035

70.36253.12875.23148.3612.44310952940419900988184525.1750108566254RF00034

144.98358.62852.812109.545.8814705798209411710850136.7534594976155RF00033

346.38505.17149.62218.210.43107988491691126341349.223401927493RF00032

531.71883.47745.921239.391.403507177612244593669577.8317471198130RF00031

614.13972.341267.832007.352.065161122643303118490680.8626710573271RF00027

335.65629.561621.653041.664.8312078565017730281607784.3365192108534RF00026

110.03341.211223.243793.4711.12277942181017788299583330.554266150218RF00021

438.64765.831458.672546.753.338313671825320749966780.542836989875RF00019

401.38715.371885.2133604.7011742134957514966366482.6662121487523RF00016

80.42284.321597.325647.1919.86496560215931779853816026.5684412280385RF00015

122.60342.14797.992227.026.51162725238210414415244729.630832331395RF00014

201.42317.35851.321341.334.2310566696976762686060428.219070963221RF00008

581.56835.392301.543306.083.969893826446332048924781.551610209630RF00006

100.70271.97873.882360.18.68216942341013884309825123.9533258736474RF00005

145.15394.961284.433494.928.85221220369714158103660836.8552178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

437.46611.991009.891412.812.315771373213693678855373.4327124136529RF00070

368.76635.08907.671563.222.466153610663938310824276.8330259011817RF00069

307.84620.19825.741663.592.686705988364291832549376.4932830122196RF00068

467.59651.22528.69736.311.132826647691809054520364.8311729497999RF00066

308.63723.831328.443115.634.3010760872796886958587982.0356497860699RF00065

355.65733.41959.061977.712.706741522424314574350578.3533808046397RF00063

323.68771.731483.863537.844.5811460777617334897672582.6760643374584RF00060

137.69335.78679.651657.484.9412340617447897995160935.5128050515347RF00057

138.34393.351555.484422.6911.24281090865417989815383836.3565402881033RF00056

390.14646.831391.262306.63.578915071475705645737978.2244630129995RF00055

336.18622.60798.551478.892.385938394523800572495675.1628567465732RF00054

509.36882.921187.22057.872.335826863123729192394677.3228834432030RF00053

502.27833.76839.011392.741.674176083272672693294174.5619928085927RF00052

501.58870.111009.41751.052.015031107903219909053578.125147720759RF00051

329.13624.65687.811305.382.095224485783343670897874.6424958696885RF00049

415.83701.24539.42909.671.303243069972075564782270.7914693415254RF00048

509.36814.41849.751358.651.674170665612669225987273.8319709105827RF00047

305.36621.65833.521696.872.736824027154367377378376.6233463069269RF00046

155.67364.67657.61540.474.2210560639786758809458733.6122722910361RF00043

142.63346.721003.692439.947.04175928613711259431277431.9635994743344RF00042

102.51335.241186.923881.5611.58289461618918525543606632.0559389512497RF00041

445.18685.77484.91746.981.092723135161742806502666.5911606572815RF00039

304.74726.711385.393303.74.5511365205567273731556182.1159731445866RF00038

458.45639.87220.66307.980.48120329890770111293955.544277899983RF00037

101.46309.511061.473238.0110.46261541153616738633827629.2648979650328RF00035

70.36253.12875.23148.3612.44310952940419900988184525.1750108566254RF00034

144.98358.62852.812109.545.8814705798209411710850136.7534594976155RF00033

346.38505.17149.62218.210.43107988491691126341349.223401927493RF00032

531.71883.47745.921239.391.403507177612244593669577.8317471198130RF00031

614.13972.341267.832007.352.065161122643303118490680.8626710573271RF00027

335.65629.561621.653041.664.8312078565017730281607784.3365192108534RF00026

110.03341.211223.243793.4711.12277942181017788299583330.554266150218RF00021

438.64765.831458.672546.753.338313671825320749966780.542836989875RF00019

401.38715.371885.2133604.7011742134957514966366482.6662121487523RF00016

80.42284.321597.325647.1919.86496560215931779853816026.5684412280385RF00015

122.60342.14797.992227.026.51162725238210414415244729.630832331395RF00014

201.42317.35851.321341.334.2310566696976762686060428.219070963221RF00008

581.56835.392301.543306.083.969893826446332048924781.551610209630RF00006

100.70271.97873.882360.18.68216942341013884309825123.9533258736474RF00005

145.15394.961284.433494.928.85221220369714158103660836.8552178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

Table E.7: Processor array architecture with 64 processors compared to Infernal

153

700.74980.311009.891412.811.443602954274611781463058.8127124136529RF00070

592.451020.34907.671563.221.533830138364902577097761.7230259011817RF00069

487.50982.15825.741663.591.694234545785420218595560.5632830122196RF00068

678.06944.34528.69736.310.781949273312495069830447.0111729497999RF00066

516.451211.251328.443115.632.576430597848231165231568.6356497860699RF00065

566.881168.99959.061977.711.694229529395413797616762.4433808046397RF00063

543.161295.011483.863537.842.736829753638742084646969.3660643374584RF00060

164.43401.01679.651657.484.13103332823813226601449821.228050515347RF00057

165.65470.981555.484422.699.39234761021930049410800921.7665402881033RF00056

633.341050.031391.262306.62.205491750767029440979163.4944630129995RF00055

527.23976.41798.551478.891.513786568464846807627458.9428567465732RF00054

814.611412.031187.22057.871.463643467694663638645661.8228834432030RF00053

789.931311.27839.011392.741.062655332273398825309658.6319928085927RF00052

812.891410.161009.41751.051.243104351543973569973763.2825147720759RF00051

513.30974.17687.811305.381.343349964994287955192058.224958696885RF00049

591.41997.35539.42909.670.912280223792918686457350.3414693415254RF00048

795.891272.54849.751358.651.072669172223416540439657.6819709105827RF00047

484.27985.87833.521696.871.724302968955507800253160.7533463069269RF00046

181.96426.24657.61540.473.6190351633711565009107319.6422722910361RF00043

168.49409.591003.692439.945.96148926442319062584618318.8835994743344RF00042

119.58391.051186.923881.569.93248149146931763090808818.6959389512497RF00041

627.59966.77484.91746.980.771931638542472497325046.9411606572815RF00039

509.731215.551385.393303.72.726794680338697190820568.6759731445866RF00038

612.61855.04220.66307.980.36900484881152620650837.114277899983RF00037

118.90362.701061.473238.018.93223187726828568029030017.1448979650328RF00035

79.89287.38875.23148.3610.96273881550535056838468314.2950108566254RF00034

173.73429.73852.812109.544.91122724112115708686353422.0234594976155RF00033

434.97634.37149.62218.210.34859944161100728523930.93401927493RF00032

761.651265.52745.921239.390.982448373553133918139955.7417471198130RF00031

1017.341610.761267.832007.351.253115536033987886119466.9726710573271RF00027

552.121035.591621.653041.662.947342835449398829365069.3665192108534RF00026

126.00390.741223.243793.479.71242713328631067306064917.4654266150218RF00021

712.221243.501458.672546.752.055120120626553754391665.3642836989875RF00019

685.401221.591885.2133602.756876293378801655508370.5762121487523RF00016

92.51327.081597.325647.1917.27431639563255249864094715.2784412280385RF00015

140.55392.26797.992227.025.68141936040618167813199016.9730832331395RF00014

222.60350.73851.321341.333.8295609165812237973227815.5819070963221RF00008

953.111369.102301.543306.082.416036947827727293206566.7851610209630RF00006

112.22303.07873.882360.17.79194685286724919716694713.3433258736474RF00005

179.03487.141284.433494.927.17179357349022957740676822.7252178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

700.74980.311009.891412.811.443602954274611781463058.8127124136529RF00070

592.451020.34907.671563.221.533830138364902577097761.7230259011817RF00069

487.50982.15825.741663.591.694234545785420218595560.5632830122196RF00068

678.06944.34528.69736.310.781949273312495069830447.0111729497999RF00066

516.451211.251328.443115.632.576430597848231165231568.6356497860699RF00065

566.881168.99959.061977.711.694229529395413797616762.4433808046397RF00063

543.161295.011483.863537.842.736829753638742084646969.3660643374584RF00060

164.43401.01679.651657.484.13103332823813226601449821.228050515347RF00057

165.65470.981555.484422.699.39234761021930049410800921.7665402881033RF00056

633.341050.031391.262306.62.205491750767029440979163.4944630129995RF00055

527.23976.41798.551478.891.513786568464846807627458.9428567465732RF00054

814.611412.031187.22057.871.463643467694663638645661.8228834432030RF00053

789.931311.27839.011392.741.062655332273398825309658.6319928085927RF00052

812.891410.161009.41751.051.243104351543973569973763.2825147720759RF00051

513.30974.17687.811305.381.343349964994287955192058.224958696885RF00049

591.41997.35539.42909.670.912280223792918686457350.3414693415254RF00048

795.891272.54849.751358.651.072669172223416540439657.6819709105827RF00047

484.27985.87833.521696.871.724302968955507800253160.7533463069269RF00046

181.96426.24657.61540.473.6190351633711565009107319.6422722910361RF00043

168.49409.591003.692439.945.96148926442319062584618318.8835994743344RF00042

119.58391.051186.923881.569.93248149146931763090808818.6959389512497RF00041

627.59966.77484.91746.980.771931638542472497325046.9411606572815RF00039

509.731215.551385.393303.72.726794680338697190820568.6759731445866RF00038

612.61855.04220.66307.980.36900484881152620650837.114277899983RF00037

118.90362.701061.473238.018.93223187726828568029030017.1448979650328RF00035

79.89287.38875.23148.3610.96273881550535056838468314.2950108566254RF00034

173.73429.73852.812109.544.91122724112115708686353422.0234594976155RF00033

434.97634.37149.62218.210.34859944161100728523930.93401927493RF00032

761.651265.52745.921239.390.982448373553133918139955.7417471198130RF00031

1017.341610.761267.832007.351.253115536033987886119466.9726710573271RF00027

552.121035.591621.653041.662.947342835449398829365069.3665192108534RF00026

126.00390.741223.243793.479.71242713328631067306064917.4654266150218RF00021

712.221243.501458.672546.752.055120120626553754391665.3642836989875RF00019

685.401221.591885.2133602.756876293378801655508370.5762121487523RF00016

92.51327.081597.325647.1917.27431639563255249864094715.2784412280385RF00015

140.55392.26797.992227.025.68141936040618167813199016.9730832331395RF00014

222.60350.73851.321341.333.8295609165812237973227815.5819070963221RF00008

953.111369.102301.543306.082.416036947827727293206566.7851610209630RF00006

112.22303.07873.882360.17.79194685286724919716694713.3433258736474RF00005

179.03487.141284.433494.927.17179357349022957740676822.7252178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

Table E.8: Processor array architecture with 128 processors compared to Infernal

154

959.011341.631009.891412.811.052632640966739560850840.2427124136529RF00070

818.061408.90907.671563.221.112773833617101014037142.6130259011817RF00069

660.701331.08825.741663.591.253124508967998742939041.0432830122196RF00068

826.311150.80528.69736.310.641599555624094862386128.6411729497999RF00066

750.301759.701328.443115.631.7744263627711331488689749.8556497860699RF00065

792.771634.80959.061977.711.213024387887742432985243.6633808046397RF00063

792.411889.281483.863537.841.8746814602211984538173850.660643374584RF00060

182.51445.10679.651657.483.7293095473823832441286011.7628050515347RF00057

184.03523.241555.484422.698.45211310928454095597673312.0965402881033RF00056

901.471494.571391.262306.61.543858303989877258180145.1844630129995RF00055

702.061300.20798.551478.891.142843584967279577484939.2428567465732RF00054

1146.321987.011187.22057.871.042589157536628243266743.528834432030RF00053

1079.261791.56839.011392.740.781943477244975301729740.0519928085927RF00052

1155.312004.171009.41751.050.872184255575591694266544.9725147720759RF00051

674.711280.52687.811305.381.022548529656524235898138.2524958696885RF00049

748.051261.50539.42909.670.721802754114615050532531.8314693415254RF00048

1098.631756.58849.751358.650.771933660014950169638139.8119709105827RF00047

658.001339.56833.521696.871.273166852538107142481341.2733463069269RF00046

210.11492.19657.61540.473.1378245539720030858160211.3422722910361RF00043

184.01447.321003.692439.945.45136363784134909128720210.3135994743344RF00042

136.20445.411186.923881.568.71217865277255773510962410.6459389512497RF00041

765.681179.49484.91746.980.631583269514053169957028.6311606572815RF00039

737.901759.661385.393303.71.8846936641312015780162049.7159731445866RF00038

612.61855.04220.66307.980.36900484882305241301618.554277899983RF00037

128.30391.381061.473238.018.2720683211975294902263169.2548979650328RF00035

86.20310.08875.23148.3610.1525383836356498262104737.7150108566254RF00034

186.89462.29852.812109.544.56114080721529204664716411.8434594976155RF00033

434.97634.37149.62218.210.34859944162201457047915.453401927493RF00032

1057.671757.38745.921239.390.711763121594513591265238.717471198130RF00031

1485.012351.201267.832007.350.852134384625464024618848.8826710573271RF00027

804.871509.651621.653041.662.0150370242612894782099850.5565192108534RF00026

134.74417.861223.243793.479.0822695599545810073482859.3454266150218RF00021

1015.981773.851458.672546.751.443589303789188617672846.6142836989875RF00019

999.491781.391885.2133601.8947154088612071446677951.4662121487523RF00016

98.07346.721597.325647.1916.29407184934910423934333148.0984412280385RF00015

154.25430.47797.992227.025.1712933557413310990697919.3130832331395RF00014

222.60350.73851.321341.333.829560916582447594645567.7919070963221RF00008

1385.331989.982301.543306.081.6641534114210632733239448.5351610209630RF00006

113.61306.83873.882360.17.6919229612034922780680386.7533258736474RF00005

191.81521.921284.433494.926.70167406383942856034273512.1752178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

959.011341.631009.891412.811.052632640966739560850840.2427124136529RF00070

818.061408.90907.671563.221.112773833617101014037142.6130259011817RF00069

660.701331.08825.741663.591.253124508967998742939041.0432830122196RF00068

826.311150.80528.69736.310.641599555624094862386128.6411729497999RF00066

750.301759.701328.443115.631.7744263627711331488689749.8556497860699RF00065

792.771634.80959.061977.711.213024387887742432985243.6633808046397RF00063

792.411889.281483.863537.841.8746814602211984538173850.660643374584RF00060

182.51445.10679.651657.483.7293095473823832441286011.7628050515347RF00057

184.03523.241555.484422.698.45211310928454095597673312.0965402881033RF00056

901.471494.571391.262306.61.543858303989877258180145.1844630129995RF00055

702.061300.20798.551478.891.142843584967279577484939.2428567465732RF00054

1146.321987.011187.22057.871.042589157536628243266743.528834432030RF00053

1079.261791.56839.011392.740.781943477244975301729740.0519928085927RF00052

1155.312004.171009.41751.050.872184255575591694266544.9725147720759RF00051

674.711280.52687.811305.381.022548529656524235898138.2524958696885RF00049

748.051261.50539.42909.670.721802754114615050532531.8314693415254RF00048

1098.631756.58849.751358.650.771933660014950169638139.8119709105827RF00047

658.001339.56833.521696.871.273166852538107142481341.2733463069269RF00046

210.11492.19657.61540.473.1378245539720030858160211.3422722910361RF00043

184.01447.321003.692439.945.45136363784134909128720210.3135994743344RF00042

136.20445.411186.923881.568.71217865277255773510962410.6459389512497RF00041

765.681179.49484.91746.980.631583269514053169957028.6311606572815RF00039

737.901759.661385.393303.71.8846936641312015780162049.7159731445866RF00038

612.61855.04220.66307.980.36900484882305241301618.554277899983RF00037

128.30391.381061.473238.018.2720683211975294902263169.2548979650328RF00035

86.20310.08875.23148.3610.1525383836356498262104737.7150108566254RF00034

186.89462.29852.812109.544.56114080721529204664716411.8434594976155RF00033

434.97634.37149.62218.210.34859944162201457047915.453401927493RF00032

1057.671757.38745.921239.390.711763121594513591265238.717471198130RF00031

1485.012351.201267.832007.350.852134384625464024618848.8826710573271RF00027

804.871509.651621.653041.662.0150370242612894782099850.5565192108534RF00026

134.74417.861223.243793.479.0822695599545810073482859.3454266150218RF00021

1015.981773.851458.672546.751.443589303789188617672846.6142836989875RF00019

999.491781.391885.2133601.8947154088612071446677951.4662121487523RF00016

98.07346.721597.325647.1916.29407184934910423934333148.0984412280385RF00015

154.25430.47797.992227.025.1712933557413310990697919.3130832331395RF00014

222.60350.73851.321341.333.829560916582447594645567.7919070963221RF00008

1385.331989.982301.543306.081.6641534114210632733239448.5351610209630RF00006

113.61306.83873.882360.17.6919229612034922780680386.7533258736474RF00005

191.81521.921284.433494.926.70167406383942856034273512.1752178338429RF00001

Speedup
over Infernal

(w/QDB)
Speedup

over Infernal

Infernal
Time (QDB)
(seconds)

Infernal
Time

(seconds)
Time

(seconds)
Schedule
Length

Total
CyclesEfficiency

Total
ComputationsCM

Table E.9: Processor array architecture with 256 processors compared to Infernal

155

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles and Techniques and Tools.
Addison-Wesley, 1986.

[2] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J.
Lipman. Basic Local Alignment Search Tool. Journal of Molecular Biology, 215:403–
410, 1990.

[3] Srinivas Aluru, Natsuhiko Fuamura, and Kishan Mehrotra. Parallel biological sequence
comparison using prefix computations. Journal of Parallel and Distributed Computing,
63(3):264–272, 2003.

[4] Antonio Carzaniga and Alexander L. Wolf. Content-based Networking: A New Com-
munication Infrastructure. In NSF Workshop on an Infrastructure for Mobile and
Wireless Systems, number 2538 in Lecture Notes in Computer Science, pages 59–68,
Scottsdale, AZ, October 2001.

[5] Antonio Carzaniga and David S. Rosenblum and Alexander L. Wolf. Design and Eval-
uation of a Wide-Area Event Notification Service. ACM Transactions on Computer
Systems, 19(3):332–383, August 2001.

[6] Andrew W. Appel. Modern Compiler Implementation in Java. Cambridge University
Press, 1998.

[7] Zachary Baker, Hong-Jip Jung, and Viktor K. Prasanna. Regular Expression Software
Deceleration for Intrusion Detection Systems. In Proceedings of International Con-
ference on Field-Programmable Logic and Applications (FPL), Madrid, Spain, August
2006.

[8] Zachary K. Baker and Viktor K. Prasanna. A Methodology for Synthesis of Efficient
Intrusion Detection Systems on FPGAs. In IEEE Symposium on Field-Programmable
Custom Computing Machines, Napa Valley, CA, April 2004. IEEE.

[9] K. E. Batcher. Sorting Networks and their Applications. In Proceedings of the AFIPS
Spring Joint Computer Conference 32, pages 307–314, 1968.

[10] Joao Bispo, Ioannis Sourdis, Joao M.P. Cardoso, and Stamatis Vassiliadis. Regular
Expression Matching for Reconfigurable Packet Inspection. In Proceedings of Inter-
national Conference on Field Programmable Technology (FPT), Bangkok, Thailand,
December 2006.

156

[11] Florian Braun, John W. Lockwood, and Marcel Waldvogel. Layered Protocol Wrap-
pers for Internet Packet Processing in Reconfigurable Hardware. IEEE Micro, Volume
22(Number 3):66–74, February 2002.

[12] Benjamin C. Brodie, David E. Taylor, and Ron K. Cytron. A scalable architecture
for high-throughput regular-expression pattern matching. In ISCA ’06: Proceedings of
the 33rd annual international symposium on Computer Architecture, pages 191–202,
Washington, DC, USA, 2006. IEEE Computer Society.

[13] Michael P. S. Brown. Small Subunit Ribosomal RNA Modeling Using Stochastic
Context-Free Grammars. In Proceedings of the Eighth International Conference on
Intelligent Systems for Molecular Biology, pages 57–66. AAAI Press, 2000.

[14] Antonio Carzaniga, Matthew J. Rutherford, and Alexander L. Wolf. A Routing Scheme
for Content-Based Networking. In Proceedings of IEEE INFOCOM 2004, Hong Kong,
China, March 2004.

[15] Young H. Cho and William H. Mangione-Smith. High-Performance Context-Free
Parser for Polymorphic Malware Detection. In Advanced Networking and Commu-
nications Hardware Workshop, Madison, WI, June 2005. Lecture Notes in Computer
Science (LNCS).

[16] Young H. Cho, Shiva Navab, and William H. Mangione-Smith. Specialized Hard-
ware for Deep Network Packet Filtering. In 12th Conference on Field Programmable
Logic and Applications, pages 452–461, Montpellier, France, September 2002. Springer-
Verlag.

[17] Chu-Sing Yang and Mon-Yen Luo. Efficient Support for Content-Based Routing in
Web Server Clusters. In Proceedings of USENIX Symposium on Internet Technologies
& Systems (USITS), Boulder, CO, October 1999.

[18] Cristian Ciressan, Eduardo Sanchez, Martin Rajman, and Jean-Cédric Chappelier. An
FPGA-Based Coprocessor for the Parsing of Context-Free Grammars. In Proceedings
of IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM),
Napa, CA, April 2000.

[19] Cristian Ciressan, Eduardo Sanchez, Martin Rajman, and Jean-Cédric Chappelier.
An FPGA-Based Syntactic Parser for Real-Life Unrestricted Context-Free Grammars.
Lecture Notes in Computer Science, 2147:590, 2001.

[20] Christopher R. Clark and David E. Schimmel. Efficient Reconfigurable Logic Circuits
for Matching Complex Network Intrusion Detection Patterns. In International Con-
ference on Field Programmable Logic and Applications (FPL), pages 956–959, Lisbon,
Portugal, 2003.

[21] John Cocke. Programming Languages and Their Compilers: Preliminary Notes.
Courant Institute of Mathematical Sciences, New York University, 1969.

[22] E.G. Coffman and R.L. Graham. Optimal Scheduling for Two-Processor Systems. Acta
Informatica, 1(3):200–213, 1972.

[23] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: Prob-
abilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.

157

[24] Sean R. Eddy. Computational Analysis of RNAs. Cold Spring Harbor Symposia on
Quantitative Biology, 71(1):117–128, 2006.

[25] Sean R. Eddy and Richard Durbin. RNA Sequence Analysis Using Covariance Models.
Nucleic Acids Research, 22(11):2079–2088, April 1994.

[26] Stephen G. Eick, John W. Lockwood, James Moscola, Chip Kastner, Andrew Levine,
Mike Attig, Ron Loui, and Doyle J. Weishar. Transformation Algorithms for Data
Streams. In Proceedings of IEEE Aerospace Conference, Big Sky, MT, USA, March
2005.

[27] P.C. Fishburn. Interval Orders and Interval Graphs. John Wiley & Sons, New York,
1985.

[28] R. Franklin, D. Carver, and B. L. Hutchings. Assisting Network Intrusion Detection
with Reconfigurable Hardware. In IEEE Symposium on Field-programmable Custom
Computing Machines, Napa Valley, CA, April 2002. IEEE.

[29] N. Freed and N. Borenstein. RFC 2045: Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies, November 1996.

[30] N. Freed and N. Borenstein. RFC 2046: Multipurpose Internet Mail Extensions
(MIME) Part Two: Media Types, November 1996.

[31] G. D. Ritchie and F. K. Hanna. Semantic Networks - A General Definition and a
Survey. Information Technology: Research and Development, 2(4):187–231, 1983.

[32] L. Rodney Goke and G. J. Lipovski. Banyan Networks for Partitioning Multiproces-
sor Systems. In ISCA ’73: Proceedings of the 1st Annual Symposium on Computer
Architecture, pages 21–28, New York, NY, USA, 1973.

[33] Sam Griffiths-Jones, Simon Moxon, Mhairi Marshall, Ajay Khanna, Sean R. Eddy, and
Alex Bateman. Rfam: Annotating Non-Coding RNAs in Complete Genomes. Nucleic
Acids Research, 33, 2005.

[34] H. Ahmadi and W. Denzel. A Survey of Modern High-Performance Switching Tech-
niques. IEEE Journal on Selected Areas in Communications, 7(7):1091–1103, 1989.

[35] HMMER Website. http://hmmer.janelia.org [July 2007].

[36] Te C. Hu. Parallel Sequencing and Assembly Line Problems. Operations Research,
9(6):841–848, 1961.

[37] Infernal Website. http://infernal.janelia.org [October 2007].

[38] T. Kasami. An Efficient Recognition and Syntax Algortihm for Context-Free Lan-
guages. Technical Report Scientific Report AFCRL-65-758, Air Force Cambridge Re-
search Laboratory, Bedford MA, 1965.

[39] Charles M. Kastner. HAIL: An Algorithm for the Hardware-Accelerated Identification
of Languages. Master’s thesis, Washington University, St. Louis, MO, USA, May 2006.

158

[40] Chip Kastner, Adam Covington, Andrew Levine, and John Lockwood. HAIL: A
Hardware-Accelerated Algorithm for Language Identification. In Proceedings of 15th
International Conference on Field-Programmable Logic and Applications (FPL), Tam-
pere, Finland, August 2005.

[41] Kimberly C. Claffy and George C. Polyzos and Hans-Werner Braun. Application of
Sampling Methodologies to Network Traffic Characterization. In Proceedings of SIG-
COMM, pages 194–203, 1993.

[42] Andreas Koulouris, Nectarios Koziris, Theodore Andronokos, George Papakonstanti-
nou, and Panayotis Tsanakas. A Parallel Parsing VLSI Architecture for Arbitrary
Context Free Grammars. In Proceedings of International Conference on Parallel and
Distributed Systems (ICPADS), Tainan, Taiwan, December 1998.

[43] Yu-Kwong Kwok and Ishfaq Ahmad. Static Scheduling Algorithms for Allocating
Directed Task Graphs to Multiprocessors. ACM Comput. Surv., 31(4):406–471, 1999.

[44] Hans-Peter Lenhof, Knut Reinert, and Martin Vingron. A Polyhedral Approach to
RNA Sequence Structure Alignment. Journal of Computational Biology, 5(3):517–530,
1998.

[45] Tong Liu and Bertil Schmidt. Parallel RNA Secondary Structure Prediction Using
Stochastic Context-Free Grammars. Concurrency and Computation: Practice & Expe-
rience, 17(14):1669–1685, 2005.

[46] John W Lockwood. An open platform for development of network processing modules
in reprogrammable hardware. In IEC DesignCon’01, pages WB–19, Santa Clara, CA,
January 2001.

[47] John W. Lockwood, Stephen G. Eick, Justin Mauger, John Byrnes, Ron Loui, Andrew
Levine, Doyle J. Weishar, and Alan Ratner. Hardware accelerated algorithms for
semantic processing of document streams. In IEEE Aerospace Conference (Aero’06),
page 10.0802, Big Sky, MT, March 2006.

[48] T.M. Lowe and Sean R. Eddy. tRNAscan-SE: a program for improved detection of
transfer RNA genes in genomic sequence. Nucleic Acids Research, 25(5):955–964,
March 1997.

[49] John S. Mattick. Challenging the dogma: the hidden layer of non-protein-coding RNAs
in complex organisms. BioEssays, 25:930–939, 2003.

[50] J. Moscola, J. Lockwood, R.P. Loui, and M. Pachos. Implementation of a Content-
Scanning Module for an Internet Firewall. In IEEE Symposium on Field-Programmable
Custom Computing Machines, Napa Valley, CA, April 2003. IEEE.

[51] James Moscola, Young H. Cho, and John W. Lockwood. A Scalable Hybrid Regular Ex-
pression Pattern Matcher. In Proceedings of IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), Napa, CA, USA, April 2006.

[52] James Moscola, Young H. Cho, and John W. Lockwood. Reconfigurable Context-Free
Grammar based Data Processing Hardware with Error Recovery. In Proceedings of
International Parallel & Distributed Processing Symposium (IPDPS/RAW), Rhodes
Island, Greece, April 2006.

159

[53] Eric P. Nawrocki and Sean R. Eddy. Query-Dependent Banding (QDB) for Faster
RNA Similarity Searches. PLoS Computational Biology, 3(3), 2007.

[54] Val Oliva. Traffic Monitoring for High-Performance Computing: Unlocking the Knowl-
edge Within Your Network. Technical report, Foundry Networks, January 2003.

[55] William R. Pearson and David J. Lipman. Improved tools for biological sequence
comparison. Proceedings of the National Academy of Science of the U.S.A., 85(8):2444–
2448, April 1988.

[56] R. Sidhu and V. K. Prasanna. Fast Regular Expression Matching using FPGAs. In
IEEE Symposium on Field-Programmable Custom Computing Machines, Napa Valley,
CA, April 2001. IEEE.

[57] P. Resnick. RFC 2822: Internet Message Format, April 2001.

[58] Elena Rivas and Sean R. Eddy. Noncoding RNA gene detection using comparative
sequence analysis. BMC Bioinformatics, 2(1), October 2001.

[59] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In USENIX LISA
1999 conference, http://www.snort.org/, November 1999. USENIX.

[60] David S. Rosenblum and Alexander L. Wolf. A Design Framework for Internet-Scale
Event Observation and Notification. In M. Jazayeri and H. Schauer, editors, Proceed-
ings of the Sixth European Software Engineering Conference (ESEC/FSE 97), pages
344–360. Springer–Verlag, 1997.

[61] Lambert Schaelicke, Thomas Slabach, Branden Moore, and Curt Freeland. Charac-
terizing the Performance of Network Intrusion Detection Sensors. In Proceedings of
the Sixth International Symposium on Recent Advances in Intrusion Detection (RAID
2003), number 2820 in Lecture Notes in Computer Science, pages 155–172, 2003.

[62] Bertil Schmidt, Heiko Schroder, and Manfred Schimmler. Massively Parallel Solutions
for Molecular Sequence Analysis. In Proceedings of the IPDPS’02 1st International
Workshop on High Performance Computational Biology, Alamitos, CA, 2002.

[63] David Schuehler and John Lockwood. A Modular System for FPGA-based TCP
Flow Processing in High-Speed Networks. In International Conference on Field-
Programmable Logic and Applications (FPL), pages 301–310, Antwerp, Belgium, Au-
gust 2004.

[64] David Searls. The Linguistics of DNA. American Scientist, 80:579–591, 1992.

[65] J. Brian Sharkey, Doyle Weishar, John W. Lockwood, Ron Loui, Richard Rohwer, John
Byrnes, Krishna Pattipati, David Cousins, Michael Nicolletti, and Stephen Eick. Infor-
mation processing at very high-speed data ingestion rates. In Robert Popp and John
Yin, editors, Emergent Information Technologies and Enabling Policies for Counter
Terrorism, pages 75–104. IEEE Press/Wiley, 2006. ISBN: 0-471-77615-7.

[66] Robert Shiveley. Dual-Core Intel Itanium 2 Processors Deliver Unbeatable Flexibility
and Performance to the Enterprose. Technology@Intel Magazine, August 2006.

160

[67] Ioannis Sourdis and Dionisios Pnevmatikatos. Fast, Large-Scale String Match for a
10Gbps FPGA-based Network Intrusion Detection System. In 13th Conference on Field
Programmable Logic and Applications, Lisbon, Portugal, September 2003. Springer-
Verlag.

[68] M. Srinivas and Lalit M. Patnaik. Genetic algorithms: A Survey. IEEE Computer,
27(6):17–26, 1994.

[69] Gisela Storz. An Expanding Universe of Noncoding RNAs. Science, 296(5571):1260–
1263, May 2002.

[70] Matthias Vallentin, Robin Sommer, Jason Lee, Craig Leres, Vern Paxson, and Brian
Tierney. The NIDS Cluster: Scalable, Stateful Network Intrusion Detection on Com-
modity Hardware. In Proceedings of the 10th International Symposium on Recent Ad-
vances in Intrusion Detection, Queensland, Australia, September 2007.

[71] S. Washietl, I. L. Hofacker, M. Lukasser, A. Huttenhofer, and P. F. Stadler. Mapping
of conserved RNA secondary structures predicts thousands of functional noncoding
RNAs in the human genome. Nature Biotechnology, 23:1390–1390, 2003.

[72] Katsuhiro Watanabe, Nobuhiko Tsuruoka, and Ryutaro Himeno. Performance of Net-
work Intrusion Detection Cluster System. In Proceedings of High Performance Com-
puting, number 2858 in Lecture Notes in Computer Science, pages 278–287, 2003.

[73] Zasha Weinberg and Walter L. Ruzzo. Faster Genome Annotation of Non-coding RNA
Families without Loss of Accuracy. In Eighth Annual International Conference on
Research in Computational Molecular Biology (RECOMB 2004), pages 243–251, San
Diego, CA, March 2004.

[74] Zasha Weinberg and Walter L. Ruzzo. Sequence-based heuristics for faster annotation
of non-coding RNA families. Bioinformatics, 22(1):35–39, 2006.

[75] D.H. Younger. Recognition and Parsing of Context-Free Languages in Time O(n3).
Information and Control, 10(2):189–208, 1967.

161

Vita
James M. Moscola

Education Ph.D. Computer Engineering, Washington University, May 2008

M.S. Computer Science, Washington University, August 2003

B.S. Computer Engineering, Washington University, May 2001

B.S. Physical Science, Muhlenberg College, May 2000

Professional

Societies

Institute of Electrical and Electronics Engineers

Eta Kappa Nu Electrical and Computer Engr. Honor Society

Golden Key International Honor Society

Conference

Papers

Phillip H. Jones, James Moscola, Young H. Cho, John W. Lockwood. Adaptive

Thermoregulation for Applications on Reconfigurable Devices. Proceedings

of Field Programmable Logic and Applications (FPL), (Amsterdam, Nether-

lands), August 27-29 2007.

James Moscola, Young H. Cho, John W. Lockwood. Hardware-Accelerated

Parser for Extraction of Metadata in Semantic Network Content. Proceed-

ings of IEEE Aerospace Conference, (Big Sky, MT), March 3-10, 2007.

James Moscola, Young H. Cho, John W. Lockwood. A Reconfigurable Archi-

tecture for Multi-Gigabit Speed Content-Based Routing. Proceedings of Hot

Interconnects 14 (HotI), (Stanford, CA), August 23-25, 2006.

Young H. Cho, James Moscola, John W. Lockwood. Context-Free Grammar

based Token Tagger in Reconfigurable Devices. Proceedings of International

Workshop on Data Engineering (ICDE/SeNS), (Atlanta, GA), April 3-7,

2006.

Stephen G. Eick, John W. Lockwood, James Moscola, Chip Kastner, Andrew

Levine, Mike Attig, Ron Loui, Doyle J. Weishar. Transformation Algorithms

for Data Streams. Proceedings of IEEE Aerospace Conference, (Big Sky,

MT), March 5-12, 2005.

John W. Lockwood, James Moscola, David Reddick, Matthew Kulig, Tim

Brooks. Application of Hardware Accelerated Extensible Network Nodes for

Internet Worm and Virus Protection. Proceedings of International Working

Conference on Active Networks (IWAN), (Kyoto, Japan), December, 2003.

John W. Lockwood, James Moscola, Matthew Kulig, David Reddick, Tim

Brooks. Internet Worm and Virus Protection in Dynamically Reconfigurable

Hardware. Proceedings of Military and Aerospace Programmable Logic De-

vices (MAPLD), Paper E10, (Washington D.C.), September 9-11, 2003.

John Lockwood, Chris Neely, Chris Zuver, Dave Lim, James Moscola. An

Extensible, System-On-Programmable-Chip, Content-Aware Internet Fire-

wall. Proceedings of Field-Programmable Logic and Applications (FPL), Pa-

per 14B, (Lisbon, Portugal), September 1-3, 2003.

David V. Schuehler, James Moscola, John Lockwood. Architecture for a Hard-

ware Based, TCP/IP Content Scanning System. Proceeding of Hot Inter-

connects 11 (HotI-11), pp. 89-94, (Stanford, CA, USA), August 2003.

James Moscola, Michael Pachos, John Lockwood, Ronald P. Loui. FPsed:

A Streaming Content Search-and-Replace Module for an Internet Firewall.

162

Proceeding of Hot Interconnects 11 (HotI-11), pp.122-129, (Stanford, CA,

USA), August 2003.

James Moscola, John Lockwood, Ronald P. Loui, Michael Pachos. Implemen-

tation of a Content-Scanning Module for an Internet Firewall. Proceedings

of IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM), pp. 31-38, (Napa, CA, USA), April 9-11, 2003.

Journal

Papers

James Moscola, Young H. Cho, John W. Lockwood. Reconfigurable Content-

based Router using Hardware-Accelerated Language Parser. Transactions

on Design Automation of Electronic Systems (TODAES), Volume 13, Num-

ber 1, April 2008.

David V. Schuehler, James Moscola, John W. Lockwood. Architecture for a

Hardware-Based, TCP/IP Content-Processing System. IEEE Micro, Vol-

ume 24, Number 1, January/February 2004, pp. 62-69.

Short

Papers

Phillip H. Jones, James Moscola, Young H. Cho, John W. Lockwood. Chang-

ing Output Quality for Thermal Management. Proceedings of IEEE Sympo-

sium on Field-Programmable Custom Computing Machines (FCCM), (Napa,

CA, USA), April 23-25 2007.

James Moscola, Young H. Cho, John W. Lockwood. Implementation of Net-

work Application Layer Parser for Multiple TCP/IP Flows in Reconfigurable

Devices. Proceedings of International Conference on Field Programmable

Logic and Applications (FPL), (Madrid, Spain), August 28-30, 2006.

James Moscola, Young H. Cho, John W. Lockwood. A Scalable Hybrid Regu-

lar Expression Pattern Matcher. Proceedings of IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), (Napa, CA), April

24-26, 2006.

James Moscola, Young H. Cho, John W. Lockwood. Reconfigurable Context-

Free Grammar based Data Processing Hardware with Error Recovery. Pro-

ceedings of International Parallel & Distributed Processing Symposium

(IPDPS/RAW), (Rhodes Island, Greece), April 25-26, 2006.

Young H. Cho, James Moscola, John W. Lockwood. Context-Free Grammar

based Token Tagger in Reconfigurable Devices. Proceedings of International

Symposium on Field-Programmable Gate Arrays (FPGA), (Monterey, CA),

February 22-24, 2006.

Haoyu Song, Jing Lu, John Lockwood, James Moscola. Secure Remote Control

of Field-programmable Network Devices. Proceedings of IEEE Symposium

on Field-Programmable Custom Computing Machines (FCCM), (Napa, CA),

April 20-23, 2004.

Technical

Reports

James Moscola. FPgrep and FPsed: Packet Payload Processors for Manag-

ing the Flow of Digital Content on Local Area Networks and the Internet.

Master’s Thesis, Washington University, August 2003.

Patents John Lockwood, Ronald Loui, James Moscola, Michael Pachos. Methods,

Systems, and Devices Using Reprogrammable Hardware for High-Speed

Processing of Streaming Data to Find a Redefinable Pattern and Respond

Thereto. Issued August 2006.

May 2008
163

Hardware-Accelerated Parsing, Moscola, Ph.D. 2008

