BAMBOO -
SUPRPORTING DYNAMIC PROTOCOLS FOR VIRTUAL ENVIRONMENTS

Kent Watsen & Mike Zyda

NPINET Research Group

Naval Postgraduate Schod
Monterey, CA.

Abstract

Distributed virtual environments enable interaction
between participants using networking protocols.
Historically, for lack of better methods, a single, al
encompassng, highly enumerated protocol would be
used. However, al entity expressons would be limited
to just those having enumerations. Some more recent
protocols enable dynamicdly enumerated objects using
remote method invocation. Unfortunately, remote
method invocation increases network traffic while
ddlaying latency-critical interactions. This paper
introduces another approach whereby the system
dynamically downloads and ingtals client-spedfic
networking protocols at runtime. This approach incurs
longer objed initidization while providing optimal
runtime performance as the protocol can be spedalized
for the spedfic needs of that object. The reason that
this approach has not yet been redized, until now, is
due to the lack of a VE todkit, like Bamboq capable
of supporting dynamic extensibility. This paper detail s
how Bamboo enables per-objea network protocols for
distributed virtua environments.

Introduction

The devel opment of distributed systems has been of
active academic and commercia interest since the
advent of networking technology. These systems
traditionaly implemented cost-effedive solutions that
maximized the utilization of valuable resources. More
recently, these systems have been used to dstribute
computationally intensive @l culations across machines
hosted on a network. Ancther class of distributed
systems enable the interaction between geographically
remote participants within a shared, threedimensional
space This last classimplements what is commonly
referred to as a distributed virtual environment (VE).

The development of distributed VE appli cations has
been a primary focus of many reseach ingitutions.
Reaognizing this trend, some groups have developed
todkits that help implement spedfic applications by
providing features common to those types of

Presented at the 1998 |M AGE Conference
Scottsdale, Arizona, 2-7 August 1998.

applications. However, these todkits tend to ke
monolithic achitedures, limited in capability, difficult
to extend, and/or available on only a few platforms, if
not just one. The most significant of such todkits
include Alice (Deine, 1993, AVIARY (Snowdon,
1994, BrickNet (Singh, 1994), DIVE (Carlsson, 1993,
dV'S (Division, 1998), EasyScene (Coryphaeus, 1998,
MASSVE (Greenhalgh, 1995, MR Todkit (Shaw,
1993, NPSNET (Macedonia, 1994, Vega (Paradigm,
1998, VEOS (Bricken, 1994, and World Todkit
(Sense8, 1998).

Another general failing o distributed VEs is that
the networking solutions tend to lack flexihility.
Historically, for lack of better methods, a single, al
encompassng, highly enumerated, networking
protocol, such as DIS (IEEE, 1993), would be utilized.
However, the protocol’s capabili ties would be quickly
exceeded as the individual participants desire to more
fully express themsdves (Singhal). Naturaly, the
missng features would be appended to the next version
of the protocol, yet there would inevitably be the need
for additional features. Thistest-and-patch approach is
visible by the sequence of DIS protocols released over
its $x years of development. More recantly has there
been the development of protocols, such as CORBA
(Ben-Natan, 1995), that enable dynamically
enumerated objects using remote method invocation.
Unfortunately, this approach tends to increase the
amount of network traffic while delaying latency-
critical interactions.

Anocther approach is for the system to dynamically
download and indall client-spedfic networking
protocols at runtime. Although this approach is
mentioned in the VRTP white paper (Brutzman, 1997),
it has not yet been previously implemented, at least not
in the virtual environment community. One of the
more interesting aspeds of this approach is the ability
to have more than one protocol active at a time. In
particular, rather then have one protocol for N entities
there auld be N protocols, one for each entity. This
sugeests a fundamentally different solution for data
distribution as it is no longer the @ase that a single,
monolithic protocol must handle dl the networking.
Not only does this afford greder flexibility for the
programmer, but it also implements optimal delivery
medanismsfor spedfic data sets.

Watsen, KA-1

Bamboo (Watsen, 1998) is the result of years of
trying to develop an adequate todkit for the reseach
and development of distributed VES. It achieves this
goa by understanding key issues and providing dired
support for them, applying lesons leaned from
previous efforts towards an efficient implementation.
These solutions are provided in the form of practica
medanisms implemented using oljed oriented and
generic programming tedhniques. In particular,
Bamboo is a virtua environment todkit focused on the
ability for the system to dynamically configure itself
without explicit user interaction, enabling the system to
take on new functionality after exeaution.

Enabling Dynamic Extensibility

All programming efforts, including distributed VEs,
benefit from good software engineering design and
development practices. These techniques attempt to
facilit ate low coupling, high cohesion, and code reuse.
The ability to delay programming dedsions until latein
the engineaing design cycle also provides greater
flexibility. This benefit is espedally noticeable when
such dedsions can be made after exeaution. Systems
that do enable such dedsions to be made after
exeaution are said to be dynamicdly configurable.
These systems facilitate orthogonal decomposition,
save memory, reduce swapping, save disk space while
simplify modifications (Ho, 1991).

As siccesqul as dynamically configurability is, it
has not previoudy been applied to dstributed VEs. A
likely explanation for this is that its most effedive
utilization requires consideration ealy in the design
cycle, thus requiring a greater amount of foresight.
However, dynamic extenshility has been Bamboo's
single most influential design dedsion. So much so
that all of Bamboo itsalf is comprised of many
modules, to the extent that the origind exeautable, the
core (seeFigure 1), has only just enoughlogic to page
modules and provide the initiad framework for the
plug-ins to hodk into. In this way, no assumptions are
made regarding what capabilities are needed by the
kerndl, but are determined at runtime by the appli caion
being loaded. For ingtance, if the particular appli cation
does not neal a devicespedfic driver, the system
would not load that module and thus sve the memory
and processing time that would ordinarily be consumed
by such a medhanism.

Fig. 1 Abstract plug-in view.

However, having each application spedfy every
module it depends on could be a complex and error-
prone process Fortunately, each module, when being
loaded, only neals to wverify that its immediate
dependencies are dready in memory, loading them if
not. For example, usng Figure 2 as a reference
asaime that module M4 isto ke loaded into the system.
The system mugt first verify that M3 has aready been
loaded into memory. Asauming that M3 has not yet
been loaded, the system must then verify that bath M1
and M2 have been loaded into memory. Asaiming that
neither M1 nor M2 have yet been loaded into memory,
the system may go ahead and b so as they do not have
any dependencies. Once M1 and M2 are loaded, M3
can load, and finally can M4. This sequenceillustrates
how a module (M4) neal only spedfy its immediate
dependants (M3). Now assume that M5 is to be
loaded. Since M3 is now aready in memory, the
syssem may load M5 immediately. This example
shows how shared dependencies do not require
multiple loads. Naturaly, the unloading of modules
proceals in the reverse order while reference ounts
identify shared dependencies.

CORE

Al AN

M1 M2

N
M4/ \MS

Fig. 2 Module dependency view.

Watsen, KA-2

Because it is desirable to have a module loaded off
the network, if not found locally, its integrity may be
susped. This concern will be mitigated by Bamboo's
insistence that a trusted partner sign all modules being
loaded off the network. If the module does not have a
trusted signature, the system prompts to have the
signature alded, to just load the module, or to ignore
the module altogether. Modules may be multiply
signed, thus enabling a hierarchy of trusted partners.
For ingance the author may sign the module and the
author’s company may signthe module. Few may trust
the author diredly, but many may trust the author’s
company. At thetop of thishierarchy is Bamboo itsdf;
amodule signed by Bamboo is implicitly trusted by all.
It is reagnized that this sheme can not be trusted to
searre global-wide simulations, but does provide
reasonable trust for academic and commercial research
ingtitutions.

Enabling dynamic extensibility requires more than
simply bringing new code into the same address pace
as the current exeaitable. In order for the module to
perform work, as most modules do, it must either
attach itself to an existing thread o create its own.
Therefore, Bamboo provides a framework that the new
code @n explicitly attach itself to. Although this
framework supports the management of lightweight
threads, it is gill posshble for the newly loaded module
to create its own. Therefore, this framework aso has
built-in synchronization primitives for thread safe
accessof global methods and/or veriables. Following is
a brief introduction to the framework itself.

void func(Object *obj, Data *data)

Fig. 3 A smple cdl back.

The allback class implements one of the most
fundamental mecdhanisms in al of Bamboo. In its
smplest form, depicted in Figure 3, a allback
abstracts the exeaution of a single function having a
spedfic dedaration. In particular, the allback
abstraction passes one reference to the invoking object
and another to some user-spedfied callback data. As
trivial as it may seem, the callback will be seen to be
the backbone of Bamboo' s architedure.

y

- >
>
- >

AL OoTHRRFPLN
RO —oB oo

[

Fig. 4 The cdl back handler.

The a@llback hander class depicted in Figure 4,
coll aborates with the callback class It provides an
interfacethat callbacks can add a remove themselves
from. Cadlback handlers have the property of
sequentially exeauting each of its cdlbacks in order
when it itself is exeauted. The cdlback handler may
be exeauted explicitly every time its subroutine is
exeauted, or in response to an event, such as a timer
interrupt.

—>(<Pre—CaIIback Handler)
) func ()

4—(<Post—CaIIback Handler)

Fig. 5 All callbacks arereairsive.

Of course, the callback hander itsef would be a
limiting solution if I&ft in this form. Ensuring that the
system can support robust behavior, each cdlback is
actualy reaursive in that it embeds two callback
handlers (see Figure 5), one just before aad one just
after the allback function is exeauted. This approach
facilit ates the grouping o like functionadlity. In this
way, the eeautable can be though of as a tree of
calbacks (see Figure 6). Any sub-tree of this
exeaution tree may be sdedively pruned or simply
paused, automatically doing the sameto its children.

NE 1T
4 -

<)
<)

—

Fig 6 Singlethreaded exeaution treeview.

Watsen, KA-3

Enabling Dynamic Protocols

Now that a method for dynamicdly loading new
code into a networked application has been establi shed,
it isinteresting to consider how these modules might be
used in adistributed VE. The initid use for modules,
as suggested by the original Bamboo paper (Watsen,
1998, isto enable various groups to share their results
within eachother’s environments. These results
typically represent the geometry, texture, sound, and/or
behavior for some object in the VE. However, if the
module uld actually define a communication
protocol, a fundamental shift to how networked VEs
are defined might ensue. Naturally, all users could
agree to use a ommon protocol, like DIS, but that
would not add much to existing scenarios. Insteal,
moving towards the other extreme, imagine esery user
defining their own protocol. That is, the only way to
represent a user in your environment is if your system
first downloads that user’s client module, which may
not only include the above daracteristics but also
initiates and decodes network traffic with that user.
This approach would not only enable new (never
before seen) usersto enter already existing simulations,
but would also enable the packets sent from the host to
its clients to be optimized for its particular neals.

Given this goal, the outstanding question remaining
is how or when the module is supposed to get itsdlf
ingtalled. That is, what event will initiate asystem to
download another user’s client module. There ae two
basic solutions to this problem: proactive and reactive.
The proactive approach is to have the system somehow
actively identify that it is mising the module. The
reactive approach is to have the module inform the
system that it ismissng. Both of these approaches are
considered next.

Proactive Approach to Module Installation

A practical scenario illustrating the proactive
approach is discovering the client modul€'s URL in a
VRML (Carey, 1997 file loaded off the network (see
Figure 7). This <enario depicts a server-supported
client module. That is, the dynamically loaded module
must ligen for packets being sent to it in order to
maintain its gate. It is interesting to note that some
modules may not require server support, as they are
able to maintain their own state internally (eg. an
autonomous agent), while other modules that do
reguire server support might represent non-interactive
objeds not requiring knowledge of your existence in
the VE (e.g. an environment server). But asuming
that the dient module actually represents another
interactive user in the VE, it is not clea how the other
user's gistem discovers your presence It might be
possble for the other system to infer your existence
based on your downloading o its module or perhaps

the module itself sends a message back to the other
system whil e being initialized.

-
VRML
‘1/ URL
URL
@‘ 3

Fig. 7 Proactive module ingdl ation.

While it is possble for two interactive users to
discover each other’'s existence using the proactive
approach, the above scenario is best suited for non-
interactive virtual objects limited to the space defined
by the VRML file. However, participants in a shared
space ae likely to require greater mohility. It is
therefore necessary to establish a more robust
convention by which users can introduce and remove
themselves from each other’s g/stems.

Reactive Approach to Module Installation

The reactive approach requires users to actively
inform each other of their existence Sincethe users do
not know whom the others are until after runtime, each
system must actively open and listen to a port on which
it expedsto receve dient requests. A simple solution,
implemented by DIS, is to have every objed
periodically broadcast a heatbeat message identifying
its exisence to the rest of the world. Not recaving a
heatbeat from a user within a predefined timeout
threshold indicates that the user is no longer being
represented and can be safely removed from the
system. However, network packet analysis of a DIS
exercise identified that nealy 96% of all network
traffic was due to these entity state packets (Pullen,
1995.

An dternative approach is to use reliable packet
trangmisgon to guarantee that individual “creation”
and “destruction” notifications will be receéved without
having to periodically send out heatbeat packets.
Officialy, reliable packet transmisson is currently
only available for wunicast addressed packets.
Unfortunately, addressng a unicast packet requires
knowing the redpient’s address beforehand, which is
exactly the isale being solved. ISTP (Waters, 1997
avoids this isaue by using a central server from which
new users can receave information about all other users
in the VE, and visa versa. This solution appeas
promising as the protocol’s designers have been careful
not to limit the system’s scalability, as servers are often
the battlenedk in distributed systems.

Watsen, KA-4

Anocther reiable packet transmisson approach can
be achieved by using one of the experimental reliable
multicast protocols, includng RMP (GlobalCast
Communications, 1997, SRTP (Pullen, 1996), RMTP
(Paul, 1997), and RAMP (Koifman, 1996. These
protocols achieve a optima solution as they provide
reliable peg-to-pea communicaions to an unknown
number of subscribers. Both the PARADISE Projed
(Holbrook, 1995, and the TASC (Smith, 1996 system
implement distributed VEs using reliable multicast. As
depicted in Figure 8, new users @end crestion
notifications out on a predetermined configuration
multicast channel (8.1). As ome participants will
introduce themselves after others, all participants agree
to send a reply back to the new user’s system when
first discovered (8.2). Both message mntain the URL
from which the user’s client module can be retrieved
(8.3 & 84). No speda precutions need to be taken
into acoount for deletion. That is, the natification, a
reliable multicast message, does not require aresponse.

Default Port E B Default Port

Default Port W # Default Port

Default Port [B Default Port

(nfye— ()

Fig. 8 Reactive module installation.

Implementing the Reactive Approach

The above scenario illustrates the basic approach
but glosses over many important details. In particular,
it has not been determined how the new user’s g/stem
knows what multicas channd to send oaut its
introduction on. Stated another way, imagine surfing
the net and finding a description of an environment that
you decide to chedk out. The way of the web is to
follow links to their destinations, so will it be for
joining the VE. Without goinginto al the detail s, the
end result of thislink should be your likeness (e.g. an
avatar) immersed in the spedfied environment and
interacting with the other usersthere,

Theinitial approach will be have Bamboo define an
unique MIME type “.bar” (Bamboo Archive). Thus,
the web browser will know to launch Bamboo and pass
the file asa command line parameter. Bamboo, in turn,
will test for avalid signature, unarchive it, and load it
into memory. This module may have any number of
dependencies, but it itsef must define the application
spedfics of the environment that the user is joining.
Rather then have this module define the whole
environment, there ae advantages to delaying the
dedsion until later. In this way, the module is like a
boat loader (e.g. LoadLin, Lilo, etc.) that helps load the
rest of an operating system. The advantages gained by
this delay pertain to the environment’s reation to an
AOIM (areacf interest manager). An AOIM isused to
reducethe complexity of a simulation to the subset that
is only of interest to the dient. Immediately loading
the whole environment defeats the purpose of the
AOIM, if oneisbeing used it al.

The eact nature of the system’s next step is
completely determined by the loaded module. Many
viable sequences exigt, three of which we have tested
in our lab. These sequences roughly correspond to
DIS, HLA, and CN (completely new) and are described
below but are first introduced by some theory that
explainshow they are all related.

ThreeTiersto Network Management

Experience with implementing these dynamic
protocols has | ed to the observation that there may exist
(at least) three tiers to network management. These
tiers, Global, Per-Environment, and Per-Object,
describe the abstract network layer that traffic exists on
to perform certain operations. For now, assime that
each isimplemented by a unique multi cast address

Global. This layer is shared world-wide ad
consists of very low leve traffic used to synchronize
environments. In particular, the sole purpose of this
layer isto enable the discovery of environments.

Per-Environment. This layer is shared per-
environment and congsts of low level traffic used to
synchronize oljects. The primary purpose of this layer
is to enable the discovery of objeds. A secndary use
may be the management of the environment itself.

Per-Object. Thislayer is used on a per-objed basis
and consigs of traffic used to synchronize that object.
The purpose of thislayer is to enable the object’s gate
to be transmitted to remote dients. There may exist
multiple sub-layers, each corresponding to increasing
or different fidelities.

Watsen, KA-5

i Only this object’s“g

{}ﬁ? e ?;}{D it stown

& /’
@+—ro>{}
{};{}_K.A?/ D\...H{} @Ti:}rlobal
{{' ?\‘{} {{' i‘{} ® .

& 03 £ owi

Fig. 9 Threetier network view.

Figure 9 illustrates the three tiers to network
management. Note that there eists a single Global
objed that each Environment communicates with.
Each environment also communicaes with the objeds
using it. Finally, each object communicates with its
clients located on the other systems aring the same
environment. Both the Global-Env. and Env.-Obj.
traffic flows are transmitted using reliable multicast,
while each olject’s pea-to-pee traffic is, most likely,
unreliable.

ThreeDynamic Protocols with Bamboo

As mentioned above, the next step to loading the
environment depends on the module being loaded. The
module must conned to the environment’s network
traffic. Thisprocessmust consider how the networking
is implemented. Following are the three attempts
implemented in our lab.

DIS-Based Approach

The DIS-based test inserts a new and previousy
unenumerated entity into an already running DIS
exercise. In terms of the three tiers to network
management, DIS does not implement a @ncept
smilar to the Global layer. DIS does, however,
implement the Per-Environment layer in terms of a
hard-coded “exercise number” that is sent in the header
of every PDU broadcasted to hosts on the local subnet.
Furthermore, DIS also implements the Per-Objed layer
using an Entity ID that is aso sent in the header of
every PDU broadcasted. Because DIS uses broadcast,
as opposed to multicadt, the traffic from each of the
threelayers exists on the same virtual channd and thus
becomes the host’ s responsihility to filter based on the
information in the PDUs themselves.

All of the simulators participating in this exercise
were running Bamboo with a DIS-lite module. This
module only implemented a single Entity State PDU,
having just position and rotation, and a speda
Dynamic Protocol PDU. Each simulator represented
one ettty in the VE via the sending out of these PDUs
every frame (i.e. no dead-redkoning). Furthermore,
each simulator maintained a view into the world such
that the other entities could be seen from its firs-
person perspedive. All but one of the smulators, each
already having the logic to demde ad visudize the
default entity, would beinitialized a the same time and
alowed to reach a steady state (i.e. dl the smulators
knew of the others). At this point the remaining
simulator would attempt to join the eercise by
inserting a new entity type into the simulation via the
Dynamic Protocol PDU. This protocal is $milar to the
standard Entity State PDU, in that it broadcasts
position and rotation information every frame, except
that its header includes a spedal field containing the
URL of its client module. The first time the previoudy
running simulators encountered this PDU, they would
download and ingall the entity’s client module, which
would include the new entity type's geometry and
runtime behavior. At this point the original simulators
were able to visuali ze the new entity. |If the new entity
ceased to send its packets, it would timeout and be
removed from the other simulators.

HLA-Based Approach

The HLA test’s goal was smilar to the DIS-based
test — to dynamically incorporate a new object into an
already running HLA simulation. In terms of the three
tiers to network management, HLA also does not
implement a @ncept similar to the Global layer.
HLA’s Per-Environment layer is defined by the
“federation object model” (FOM) and implemented by
the “runtime infrastructure” (RTI). Furthermore, its
Per-Object abstraction is referred to as a “federate.”
HLA uses a multicast channel with a unique port per
federation.

All amulators participating in the federation were
running Bamboo with an HLA administration module.
This module implemented a FOM that defined a single
objed that, like the DIS-based approach, contained
only position and rotation values that were transmitted
every frame. Each federate olject was implemented by
yet another module, that subclassed the known HLA
Admin module. As the federates discovered each
other, the name of the module to be dynamicdly
loaded was determined by the “user supplied tag.”
When this module loaded, it would insert itsdlf into the
HLA adminigtration structure and thus become part of
the federation. Similarly, when the objed ceased to
exigt, it would be removed from the federation.

Watsen, KA-6

CN-Based Approach

The CN-based approach tests the ability to insert a
completdly new object into an already running CN
virtual environment. In terms of the three tiers to
network management, the CN-based approach utilizes
unique multicast addreses for the Global, Per-
Environment, and Per-Object layers. As unique
addresses are an important design spedfication, the
MBone sesson management tod, SDP (Handley,
1998 is used to reserve the addresses in a network
friendy way. Participating systems that are “CN-
compliant” must implement the protocol defined for
each of these layers.

In order to guide the development of the next
sedion; please recl the scenario from the
“implementing the reactive approach” above. In this
example, asaume that the downloaded module defines
its environment by name. This name will bemme the
key that opens the doar through which the rest of the
environment isloaded.

The Global layer is supposed to enable the
discovery of individua environments. For this
example, it Smply maps the environment’s name to a
multicast address If this multicast address is to be
dynamically allocated, then a server listening to that
addressmugt alocate it the first time the environment’s
address is requested and released as soon as the
environment isno longer in use. Fortunately, it is not
necessry to implement a speda server as this is
exactly what SDP does. That is, the CN’'s Global layer
can be mpletdy implemented using existing
multicast tod's on the network.

Continuing with the example and wsing Figure 8 for
reference now that a unique multicast address is
known, the system announces its exisence to the
environment viareliable multicast. This announcement
not only identifies the URL where its client module
may be downloaded, but also the mnfiguration data
that is passed into the module itself while its being
initialized. Each participating system responds to the
announcement with areliable unicast message that also
identifies its URL and configuration data. The
configuration data spedfies yet another unique
multicast address on which the Per-Objed traffic
(unrdiable multicast) will exist. The reason this datais
not coded into the moduleitself isbecauseit is posshle
that more then one system will choose to represent
itself using the same server/client module combination.

At this point, all systems in the environment are
synchronized. When an objed leaves the environment,
its host system transmits notification via reliable
multicast on its Per-Object channd. Each of its client
modules then removes itsdf from its host system.
Each system aso unsubscribes from the Per-
Environment and Per-Objed addresses that SDP can
redaim those resources.

Avail abil ity

Bamboo is <heduled for a mid-1998 release,
although beta versions are aurently being made
available. The standard distribution is a colledion of
header files, dynamicdly linkable libraries, Java class
files, and an extensible runtime environment. A
developer’s distribution providing the source @de is
also fredy available. There will be no licensing feeor
shareware tharge. Bamboo has been designed to be
portable to many platforms by only using standard
APIs (C++, Java, STL, JGL, OpenGL, etc.) and aher
multi-platform todkits Fahrenheit (Silicon Graphics,
1997 and ACE (Schmidt, 1993. Although portability
is not necessarily secured by this approach, the
system’s concurrent development on several platforms
has not been hindered thus far. Furthermore, a mailing
list has been established so that interested developers
can fredy exchange comments. Plans are being made
to provide ongoing support and maintenance
developments will be axnounced on the mailing list as
they beocome known. Addtional papers and
information may be found at http://watsen.net/Bamboa

Conclusions

Bamboo overcomes many common VE system
architedure pitfalls by enabling dynamic extensibility.
Not only has this approach been shown to facilitate
modular deamposition of functionality, but it also
provides the ability to dynamicdly ingall networking
protocols at runtime. This capability aters the
fundamental approach to implementing large-scale
virtual environments. It ishoped that this reseach wil
be applied towards the development of a shared,
global, persistent VE, which would require dynamic
extensihility given that it itself never goes down.

Although this paper has emphasized the
applicability of this approach to virtual environments,
there is actualy nothing in Bamboo's kernel that is
VE-gpedfic. In particular, it is the modules that plug
into the system that give a applicdion its
functionality. Therefore, this ystem might provide an
appropriate infrastructure for routers, switches, and/or
servers.

Watsen, KA-7

Acknowledgement

Bamboo has evolved over time as the result of the
efforts of the main author and colleagues Jbel Brand
and Andrzel Kapolka. Research for this paper was
enhanced by tedhnicd discussons with colleagues
Howard Abrams, Don McGregor, and Don Brutzman.
Speda reaognition is given to Stewart Liles for the
HLA integration. Furthermore, the patience of Dr.
Mike Zyda and the NPSNET Research Group hes been
appredated. Finaly, this effort could not have been
without the generous support of our sponsors. DARPA,
ONR, DMSO, Advanced Network & Services, and the
National Tele-lmmersion Initiative.

References

Ben-Natan, R. (1995. CORBA : A Guideto the
Common Objed Request Broker Architedure,
McGraw Hill Text.

Bricken, W. and G. Coco (1994. “The VEOS Projed.”
Presence 3(2): 111-129.

Brutzman, D., M. Zyda, et a. (1997). virtual reality
transfer protocol (vrtp) Design Rationale. Workshops
on Enabling Tedhnology: Infrastructure for

Coll aborative Enterprises (WET ICE), MIT,
Cambridge Massachusetts,
http://www.stl.nps.navy.mil/~brutzman/vrtp_design.ps.

Carey, R. and G. Bdl (1997). The Annotated Vrml 2.0
Reference Manual, Addison-Wesley.

Carlson, C. and O. Hagsand (1993). “DIVE - A
Platform For Multi-User Virtual Environments.”
Computer and Graphics 17(6): 663-669.

Coryphaeus (1997). EasyScene,
http://www.coryphaeus.com/products_dir/es.html.

Deline R. (1993. Alice A rapid prototyping system
for threedimensional interactive graphicd
environments. Computer Science Department.
Charlottesvill e, University of Virginia.

Division (1997). dVS,
http://mww.division.com/5.teda_papers/uvp.htm.

Global Cast Communicéions (1997). The Reliable
Mutli cast Protocols,
http://www.gcast.com/reli ablemulticast.html.

Greanhalgh, C. and S. Benford (1995). MASSVE: a
Distributed Virtual Reality System Incorporating
Spatia Trading. Distributed Computing Systems
(DCS95), Vancouver, Canada, IEEE Computer

Soci ety.

Handley, M. and V. Jackobson (1998). SDP: Sesgon
Description Protocol. RFC 2327, ftp://ftp.isi.edu/in-
notes/rfc23271txt: 42.

Ho, W. W. and R. Olsson (1991). An Approach to
Genuine Dynamic Linking.

Holbrook, H., S. Singhal, et a. (19%). Log-Based
Reced ver-Reli able Multicag for Didributed Interactive
Simulation. ACM SIGCOMM,
ftp://ftp.dsg.stanford.edw/pub/papers/Ibrm.ps.gz.

|EEE (1993. Standard for Information Technology,
Protocols for Distributed Interactive Smulation (DIS
ANSI/IEEE standard 1278-1993), American Nationa
Standards Ingtitute, 1993.

Koifman, A. and S. Zabde (1996. RAMP: A Reliable
Adaptive Multicast Protocal. Fifteenth Annual Joint
Conference of the IEEE Computer and Communication
Societies, San Francisco, CA.,
http://www.tasc.com/arpal/tbone/ramp.html,
http://www.tasc.com/smweb/paper RAMP/ramp.htm.

Macedonia, M. R., M. J. Zyda, et al. (19949.
“NPSNET: A Network Software Architedure for
Large Scde Virua Enivornments.” Presence 3(4): 265-
287.

Paradigm (1997). Vega,
http://www.paradigms m.com/vega.html.

Paul, S, K. K. Sabnani, et al. (1997). “Rdiable
Multi cagt Trangport Protocol (RMTP),” |EEE Journal
on Seleded Areasin Communicaions.

Pullen, M. and V. Laviano (1996. Sdedively Reliable
Transmisson Protocol (SRTP) ,
http://www.nac.gmu.edu/~vlaviano/.

Pullen, M. J. and D. C. Woad (1995. Networking
Tednology and DIS. |IEEE.

Schmidt, D. (1993. The ADAPTIVE Communication
Environment: Objed-Oriented Network Programming
Components for Developing Cli ent/Server
Applications. 11th and 12th Sun Users Group,
http://mww.cs.wustl.edu/~schmidt/SUG-94.ps.gz.

Sense8 (1997). WorldTodkit,
http://www.sense8.com/products/worldtodkit.html.

Shaw, C. and M. Green (1993. The MR Todkit Peas
Package and Experiment, IEEE.

Sili con Graphics (1997). Fahrenheit,
http://mwww.sgi.com/cosmo/cosmo3d.

Watsen, KA-8

Singh, G., L. Searra, et al. (1994. “BrickNet: A
Software Tod kit for Network-Based Virtual Worlds.”
Presence 3(1): 19-34.

Singhal, S. and M. Zyda (in preparation). Networked
Virtual Environments, ACM Press

Smith, W. G. and A. Koifman (1996. A Didgtributed
Interactive Simulation Intranet Using RAMP, a

Reli able Adaptive Multicast Protocal. Fourteenth
Workshop on Standards for the Interoperabil ity of
Distributed Simulations, Orlando, FL .,
http://www.tasc.com/smweb/papers/disramp/index.ht
ml.

Snowdon, D. N. (1994). “AVIARY: Design Isaues for
Future Large-Scale Virtual Environments.”
PRESENCE 3(4): 288-308.

Waters, R. C., D. B. Anderson, et d. (1997). The
Interactive Sharing Transfer Protocol (ISTP) Version
1.0, MERL.

Watsen, K. and M. Zyda (1999. Bamboo- A Portable
System for Dynamically Extensible, Real-time,
Networked, Virtual Environments 1998 |IEEE Virtua
Reality Annua International Symposium (VRAIS98),
Atlanta, Georgia.

Author’ s Biographies

Kent Watsen is pursuing a Ph.D. under Professor
Mike Zyda while acting as project manager of the
NPINET Research Group in the Computer Science
department at the Naval Postgraduate Schod in
Monterey. He is the lead archited and developer of
Bamboo, a virtual environment todkit supporting,
among other things, the next generation of NPINET.
His relevant experience includes the design and
development of the character animation and 3D ocean
modules for EasyScene, another virtual environment
todkit that he -developed while working with
Coryphaeus Software. He also developed Visual
World, the rendering engine for a DIS smulator, while
with DCS Corporation. Finally, He is responsible for a

raytracing-for-animation package developed as his
undergraduate thesis. He holds Computer Science and
Applied Mathematics engineging degrees from the
University of Virginia. He is currently a co-chair of
the VRML symposium and is actively publishing and
presenting papers at bath IEEE and ACM sponsored
conferences. He @n be amailed at kent@watsen.net.

Michad Zyda is a Professor in Department of
Computer at the Naval Postgraduate Schod, Monterey,
Cdlifornia Professor Zyda is aso the Academic
Asociate and Chair of the NPS Modeling, Virtual
Environments and Smulation curriculum. He has been
at NPSsince February of 1984 Professor Zyda's main
focus in research is in the aea of computer graphics,
spedfically the development of large-scale, networked
3D virtud environments. Professor Zyda was a
member of the National Research Council's
Committee on Virtua Redity Research and
Development. Professor Zyda was the chair of the
Nationa Research Council's Computer Science and
Teleoommunications Board Committee on Modeling
and Smulation: Linking Entertainment & Defense.
Professor Zyda is also the Senior Editor for Virtual
Environmentsfor the MIT Pressquarterly PRESENCE,
the journd of teleoperation and virtual environments.
He is a member of the Editorial Advisory Board o the
journal Computers & Graphics. Professor Zyda is also
a member of the Technicd Advisory Board of the
Fraunhofer Center for Research in Computer Graphics,
Providence Rhode Idand. Professor Zyda has been
active with the Symposium on Interactive 3D Graphics
and was the chair of the 1990 conference held at
Snowbird, Utah and the chair of the 19% Symposium,
held in Monterey, California. Professor Zyda began
his careg in Computer Graphicsin 1973 as part of an
undergraduate reseach group, the Senses Bureauy,
at the University of California, San Diego. Professor
Zyda receved a BA in Bioengineaing from the
University of California, San Diegoin LaJollain 197,
an MSin Computer Science/Neurocybernetics from the
University of Massachusetts, Amherst in 1978 and a
DSc in Computer Science from Washington
University, St. Louis, Missouri in 1981 He can be
email ed at zyda@siggraph.org.

Watsen, KA-9

