Prototype Deployment of Internet Scale Overlay Hosting

Patrick Crowley and Jon Turner
and John DeHart, Mart Haitjema Fred Kuhns,
Jyoti Parwatikar, Ritun Patney, Charlie Wiseman,
Mike Wilson, Ken Wong, Dave Zar
Computer Science & Engineering
Washington University
www.arl.wustl.edu

Project Objectives

- Deploy five experimental overlay hosting platforms
 - located at Internet 2 PoPs
 - compatible with PlanetLab, moving to GENI control framework
 - performance characteristics suitable for service deployment
 - integrated system architecture with multiple server blades
 - shared NP-based server blades for fast-path packet processing
- Demonstrate multiple applications
Role in Cluster B

- Overlay Hosting Platform
- Deployed at 5 locations
- Serve as backbone linking cluster partners (and others)
- Demonstrate high quality service delivery on overlays
- Managed using experiment support tools

Target Internet 2 Deployment
Hosting Platform Details

Chassis Switch
- CP
- GPE
- GPE
- NPE
- PLOS

General Purpose Processing Engine
- net FPGA
- External Switch
- Chassis Switch
- Line Card
- 10x1 GbE
- Line Card
- Network Processing Engine
- parse
- lookup
- header format
- queues
- Slice manager

Application Framework

- Fastpath/slowpath
 - fastpath mapped onto NPE
 - slice manager in vServer on GPE
- Configurable elements
 - code option - determines how packets processed by parse, header format
 - logical interfaces
 - may be public or tunnel
 - guaranteed bandwidth
 - TCAM filters
 - Queues
 - length, bandwidth
- Slice manager can configure fastpath using provided library
 - or manually, using command line interface
Creating a Slice

Starting up a Slice
Configuring an External Port

- Request external port number on specific interface thru Resource Manager Proxy (RMP)
- RMP relays request to System Resource Manager (SRM)
- SRM configures LC filters for interface
- Arriving packets directed to slice, which is listening on socket

Setting Up a Fast Path

- Request fastpath through RMP
- SRM allocates fastpath
- Specify logical interfaces and interface bandwidths
- Specify #of filters, queues, binding of queues to interfaces, queue lengths and bandwidths
- Configure fastpath filters
Planned Wide-Area OpenFlow

NP Blade
Line Card Datapath

- Filter/route and rate-control traffic
- Network Address Translation for outgoing flows
- Record traffic statistics for all outgoing flows

NPE Datapath (version 1)

- Parse and Header Format include slice-specific code
 - parse extracts header fields to form lookup key
 - Hdr Format does any required post-lookup processing
- Lookup uses opaque key for TCAM lookup
- Multiple static code options can be supported
 - multiple slices per code option
 - each has own interfaces, filters, queues and private memory
NPE Datapath (Version 2)

- Use both NPs, enabling 10 Gb/s throughput
- Integrated Decap, Parse, Lookup uses MEs more efficiently
- Multicast supported by substrate

Project Plan Highlights

- Initial deployment
 - first two (maybe three) nodes deployed by mid 2009
 - shooting for v2 of NPE software
 - PlanetLab control with local resource allocation
- GENI-compatible control software
 - implement component manager interface
 - resource allocation using rspecs/tickets
- Working with users
 - online and hands-on tutorials
 - collaborating with users on new code options
- Completing deployment
 - final nodes deployed in late 2010
 - complete support for netFPGA
Looking Ahead

Bad news
- slow market for ATCA means high cost, limited support
- Intel dropped IXP and Radisys discontinuing IXP blades

Good news
- ATCA market now projected to grow rapidly and become more cost-competitive (10x growth over 3 years)
- new NPs and NP blades
 - Netronome 3200 – IXP successor with 40 microengines
 - Cavium Octeon, RMI XLR732 – MIPS-based, uses cache
- can also assemble systems from commodity components
 - 10 GbE switches now at $400-500 per port
 - conventional rack-mount servers with 8-16 processor cores
 - NPs and FPGAs on lower cost PCI-express cards